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Computer vision

▪ Spatial correlation

▪ Invariance to translation,

rotation, lighting...

▪ Hierarchical structure



Convolutional neural networks (ConvNets)

▪ Extension of multilayer perceptron

▪ Feed-forward architecture

▪ Building blocks suitable for CV problems

▪ Biologically inspired

▪ Led to breakthroughs in many CV problems in recent years



ImageNet 1K classification challenge (2010-2014)

Russakovsky et al. ImageNet Large Scale Visual

Recognition Challenge, IJCV, 2015

http://www.image-net.org/challenges/LSVRC/

▪ 1000 classes

▪ 1.28 million training 

images

▪ 50.000 test images



ImageNet 1K classification challenge (2010-2014)

http://image-net.org/challenges/talks/ILSVRC+MSCOCO_12_17_15_introduction.pdf

ConvNets
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Computer Vision Problem

vertical edges

horizontal edges



Vertical edge detection examples
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Learning to detect edges
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Padding

▪ Allowing filter to go outside input image

▪ Usually pad with zeros

▪ Used for adjusting output size
▪ Example: stride = 1, padding = (kernel size – 1) / 2
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Padding - Valid and Same convolutions

∗ =
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“Valid”:  Only convolve with valid pixels

“Same”: Pad so that output size is the same as the input size.



Stride

▪ Distance between consecutive kernel applications

▪ Used for reducing spatial resolution

2

-1

-16 16

-2 -2 2 2

-2 0 2 0 0

-2 0 0 0

0 0 0 0 0

0 0 0 0 0 4 0 Output

Weights

Input

0 2

2 0

2 0

2

0

0



Strided convolution
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Summary of convolutions

𝑓 × 𝑓 filter𝑛 × 𝑛 image

padding p stride s

𝑛+2𝑝 −𝑓

𝑠
+ 1 ×

𝑛+2𝑝 −𝑓

𝑠
+ 1



Convolutions over volumes
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Pooling layer: Max and Average pooling

Hyperparameters:

▪ f : filter size

▪ s : stride

1 3 2 1

2 9 1 1

1 3 2 3

5 6 1 2



Outline

▪ Motivation

▪ Convolution and pooling layer

▪ Basic elements of ConvNet architecture

▪ History

▪ Notable architectures for image classification



ConvNets are a form of deep learning

Elephant

Low level Intermediate level High level

▪ Many simple nonlinear layers

▪ Features are learned from data, not handcrafted

▪ Features are hierarchical



Traditional approach

▪ Sequence of nonlinear transformations

▪ Handcrafted components

▪ Machine learned components trained independently

SIFT

HoG

…

Quantization

(clustering)

Spatial 

pyramid
Histogram SVM

Design Learning

Elephant

Design Design Learning



Basic ConvNet architecture

C N P C N C N P C N C N P F F F Elephant

Low level DecisionIntermediate level High level

▪ Convolution layer

▪ Pooling layer

▪ Fully connected layer (like MLP)

▪ Various normalization layers

▪ Other…



More recent ConvNet architectures

C N P C N C N C N C N P F F F Elephant

C N C N

+

▪ Contain parallel branches

▪ Directed acyclic graph (DAG)



Activations

▪ Interpreted as multi-channel “images”
▪ Network input: 1 channel (grayscale) or 3 channels (RGB)

▪ Other activations can have more channels

▪ Channels are also called feature maps

Channels

Height

Width



Activations

▪ Usually in practice
▪ Spatial dimensions decrease with depth

▪ Number of channels increases with depth

Channels

Height

Width



Fully connected (FC) layer

▪ Same as “hidden” layer in MLP

𝑦𝑖 = 𝑔 ෍

𝑗

𝑤𝑖𝑗𝑥𝑗

Output

InputActivation function

Weight

𝑦𝑖
𝑥𝑗 𝑤𝑖𝑗

Input Hidden



Types of activation functions

max 0, 𝑥

𝑥ቊ
𝑥, 𝑥 ≥ 0
𝑎𝑥, 𝑥 < 0

tanh 𝑥1

1 + 𝑒−𝑥

Rectified linear (ReLU)

“Leaky” ReLU Rectifier

TanhSigmoid

Most popular



Fully connected layer

▪ Output has 1 x 1 spatial size

▪ Last FC layer is followed by softmax function
▪ Converts activations to probabilities

C N P F1 F2 F3 Elephant

Input F1

Output

F2 F3



Local connectivity

▪ Output neuron is connected only to 

“nearby” input neurons
▪ Neighborhood in spatial coordinates

▪ Fewer parameters and computation
▪ Many zero weights

𝑦𝑖
𝑥𝑗 𝑤𝑖𝑗

OutputInput



Weight sharing

▪ All output neurons have the same 

set of weights

▪ Stationarity: same features are of 

interest in all parts of image

Y. LeCun, M. A. Ranzato



Local connectivity + weight sharing = convolution

𝑦𝑖𝑗 = 𝑔 ෍
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Convolution

▪ Like in image processing, but filter coefficients are learned

▪ Variant with additive (bias) and multiplicative constants

Output

Input

Kernel (filter)

Activation function

𝑦 = 𝑔 𝑊 ∗ 𝑥

𝑦 = 𝑐𝑔 𝑊 ∗ 𝑥 + 𝑏

BiasScaling (trained)



Multichannel input

▪ Each input has its own filter

▪ Results are added pixelwise
▪ Before applying activation 

function

∗ 𝑊𝑅 ∗ 𝑊𝐺 ∗ 𝑊𝐵

+
∗ 𝑊𝑅 ∗ 𝑊𝐺 ∗ 𝑊𝐵

+

Output

(feature map)

𝑔 𝑔
𝑦 = 𝑔 ෍

𝑐

𝑊𝑐 ∗ 𝑥𝑐

Index of input channel



Multichannel input: equivalent view

▪ A 3D filter “slides” across multichannel input image

Input width

Input height

Output width

Output height

Input channels

Filter



Multichannel output

▪ Computing multiple feature maps of 

the same input

▪ All neurons “looking” at some region 

compute feature vector for that region

▪ Similar to hand-engineered features

(e. g. Gabor) but trained

𝑦𝑛 = 𝑔 ෍

𝑐

𝑊𝑛𝑐 ∗ 𝑥𝑐

Kernel (filter) Input channel
Output channel

(feature map)

Y. LeCun, M. A. Ranzato



▪ Weights of convolutional layer form a 4D tensor

Multichannel output: equivalent view

Output width

Output height

Input width

Input height

Input channels

Filter Output channels



Convolutional layer

▪ Set of convolutional filters with activation function

▪ Output (spatial) size ≈

(input size + pad – kernel size + 1) / stride

▪ Parameter count =

Input channels x output channels x kernel size2

▪ Operation (multiply + add) count =

input height x input width x input channels x

output height x output width x output channels



1 x 1 convolutional layer

▪ All kernels have spatial size 1 x 1

▪ Used for adjusting channel count

▪ Equivalent to applying the same FC layer to each pixel’s 

feature vector

▪ Input and output have the same spatial size



Pooling

▪ Combining outputs of nearby input neurons
▪ Max pooling

▪ Average pooling

▪ L1, L2 norm…
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▪ Max pooling with kernel size 3 x 3 and stride 2

Example

5

7

2
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0 5 -3 6 2

0 0 1 0 0

0 2 0 0 -1

2 0 0 5 0

7Max pooling



Multichannel input and output

▪ Applied independently to each input channel

▪ Input channel count = output channel count

Input width

Input height

Output width

Output height

Input channels

Pooling

kernel

Output channels



Pooling layer

▪ Only pooling operation, without activation function

▪ Pooling operation can be nonlinear
▪ E.g. max pooling

▪ Pooling operation is differentiable
▪ Allows backpropagation

▪ Stride and padding



Pooling layer

▪ Output (spatial) size ≈

(input size + padding – kernel size + 1) / stride

▪ Parameter count = 0

▪ Operation (multiply + add) count =

output height x output width x channel count x kernel size2



▪ Locality is determined by kernel size

0

Invariance to local translation

0 0 255 0 0
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0 0 255 0 0
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Max

pooling
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255
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Cat visual cortex

▪ Simple, complex, and hyper-complex cells

Hubel and Wiesel, Receptive fields of single neurones in the cat's striate cortex, 1959



Human visual cortex

S. J. Thorpe, M. Fabre-Thorpe,

Seeking Categories in the Brain, Science, 2001.

▪ Hierarchy of features 

from low to high level



Neocognitron

▪ No supervised learning algorithm

[Fukushima 1980]



Convolutional network for handwriting recognition
[Le Cun et al. 1989-1998]



Fall and rise of convolutional networks

▪ Rise of Support Vector Machines (SVM) in mid-1990s
▪ Pros: theory, convex optimization

▪ Cons: handcrafted features

▪ Return of convolutional networks from ~2012
▪ Availability of data and compute resources

▪ Trained features outperform handcrafted features

▪ Enables attacking harder problems



Today: convolutional networks are everywhere

▪ Handwriting

▪ Objects in image

▪ Scene understanding

▪ OCR “in the wild”

▪ Traffic signs

▪ Pedestrians

▪ Image segmentation

▪ Activity in video

▪ Image captioning

▪ Depth estimation

▪ Textures

▪ Body pose

▪ ...
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Image classification
hammer chime dog

ImageNet Large-scale Visual Recognition Challenge 2012

http://image-net.org/challenges/LSVRC/2012/ilsvrc2012.pdf



AlexNet

Conv 11x11, 96 outputs + ReLU

Local normalization

Max pooling 2x2 subsampling

Conv 11x11, 256 outputs + ReLU

Local normalization

Max pooling 2x2 subsampling

Conv 3x3, 384 outputs + ReLU

Conv 3x3, 384 outputs + ReLU

Conv 3x3, 256 outputs + ReLU

Max pooling

Fully connected 4096 outputs + ReLU

Fully connected 4096 outputs + ReLU

Fully connected, 1000 outputs + softmax
[Krizhevsky et al. 2012]

▪ Restarted interest in convolutional 

networks in computer vision



AlexNet

▪ 60 million parameters

▪ 832 million operations (multiply-adds)

▪ Top-5 classification error 16% on ImageNet 1K test
▪ Winner of ILSVRC 2012 (classification and detection)

▪ Previous record 26%



AlexNet training

▪ Supervised learning, gradient descent w/ backpropagation
▪ 90 epochs of ImageNet 1K training set (1.3 million images)

▪ 5-6 days on 2 x NVIDIA GTX 580 (3GB)

▪ Techniques
▪ ReLU activation function

▪ Local normalization

▪ Dropout

▪ Data augmentation



Local normalization

▪ Normalize activations by local statistics
▪ E.g. mean and standard deviation

▪ Statistics from a (3D) neighborhood

▪ Encourage “competition” for high activations
▪ Prevent coadaptation of neurons

▪ If all activations are high, they all get reduced by a lot

▪ Bio-inspired: lateral inhibition

Channels
Width

Height



Local normalization

▪ AlexNet

▪ Contrast normalization [Jarret et al. 2009]
▪ Stats are computed from all channels

▪ Weighted mean, weights decay with spatial

distance as 2D Gaussian

𝑦𝑐𝑖𝑗 =
𝑥𝑐𝑖𝑗 − 𝑚𝑐𝑖𝑗

max(𝑘, 𝜎𝑐𝑖𝑗)

Channels
Width

Height

Mean

Standard deviation



Dropout

▪ Regularization technique

▪ In each forward pass remove a random subset of neurons 

in a given layer
▪ Those neurons do not participate in backpropagation either

▪ Usually remove each neuron independently with fixed 

probability (usually 0.5)

▪ Prevents coadaptation of neurons, makes network more 

robust



Dropout

▪ At runtime multiply activations of neurons in layers subject 

to dropout
▪ Factor 1/(1-p), where p is the dropout probability

▪ Exponential family of networks with shared weights

▪ Expected activation of a randomly chosen network from the family

▪ Slows down convergence

▪ In AlexNet applied to first two FC layers



Data augmentation

▪ Problem: not enough training data (slow labeling)

▪ Data augmentation: synthesizing a large amount of “realistic” 

training examples from a small amount of real examples



Example: image classification



Types of variations

▪ Invariances built into the architecture
▪ Local translation (due to pooling)

▪ Local change in lighting (due to pooling, local normalization…)

▪ Most useful are those that are not built in
▪ Rotation, scaling, noise...



Data augmentation in AlexNet

▪ Random crop 224 x 224 pixels

▪ Horizontal flip: with probability 0.5 replace image with its 

mirror image (with respect to vertical axis)

▪ Lighting augmentation
▪ For each image choose a random RGB displacement, add it to each 

pixel

▪ “Realistic” RGB displacement is obtained from training set statistics
▪ PCA (Principal Component Analysis) of all RGB pixel values



VGGNet

▪ Simplified design, increased depth
▪ Convolution: kernel 3 x 3, stride 1, padding 1

▪ Max pooling: kernel 2 x 2, stride 2

▪ Idea: replace 5 x 5 layer with two 3 x 3 

layers
▪ Less computation, more nonlinearity

[Simonyan and Zisserman 2014]



VGGNet

▪ Top-5 classification error 7.3% on ImageNet 1K test
▪ Second place in ILSVRC 2014

▪ 138 million parameters (more than AlexNet)

▪ 15.3 billion operations (much slower than AlexNet)

[Simonyan and Zisserman 2014]



GoogLeNet

▪ Inception module
▪ Branching

▪ 1 x 1 convolutions for dimensionality 

reduction

▪ 2 auxiliary loss functions improve 

convergence

[Szegedy et al. 2014]



GoogLeNet

▪ 22 layers with weights

▪ Only 5 million parameters (12x fewer than AlexNet)
▪ No FC layers

▪ 1.5 billion operations (2x more than AlexNet)

▪ Top-5 classification error 6.7% on ImageNet 1K test
▪ Winner of ILSVRC 2014

[Szegedy et al. 2014]



Residual networks (ResNets)

▪ Extremely deep (152 layers)

▪ Top-5 classification error 3.6% 

on ImageNet 1K test

▪ Winner of all 5 disciplines in 

ILSVRC & COCO 2015

[He et al. 2015]

Kaiming He



Residual unit

▪ Small number of convolution layers 

with ReLU activation
▪ Plus normalization layers (not shown)

▪ Learns difference between its input and 

target output

▪ Improves convergence
▪ Without residual approach, increasing 

depth hurts accuracy

Standardna mreža

Rezidualna mreža

Kaiming He



Residual networks with “bottleneck”

▪ Reduces the number of parameters and 

operations

▪ Internal dimension reduction
▪ Also used in GoogLeNet

▪ Bottleneck units have more channels, but equal 

complexity as non-bottleneck units

Kaiming He

Standardna

Sa „uskim grlom“



ResNet architectures

Kaiming He



ResNet properties

▪ Almost no max-pooling
▪ Reducing spatial dimensions is done in convolution layers

▪ No FC layers

▪ No dropout

▪ No local normalization

▪ Uses batch normalization
▪ Further improves convergence



ResNet properties

▪ Training
▪ 120 epochs of ImageNet 1K training (1.3 million images)

▪ 2-3 weeks on 8 GPUs (a few days for ResNet-18)

▪ Even ResNet-152 is slightly faster than VGG-16



Batch normalization

▪ Problem: statistics of inputs to a given layer change over time
▪ The change depends on weight updates in previous layers

▪ Changes are more severe in deeper layers

▪ This limits depth of networks that can be trained

[Ioffe and Szegedy 2015]

𝑦𝑐 = α𝑐
𝑥𝑐 − E[𝑥𝑐]

Var[𝑥𝑐]
+ 𝛽𝑐

Trained additive/multiplicative constants

(one value per channel)

All activations in channel c

(minibatch size x width x height)



Batch normalization

▪ Reduces dependence on initial weights

▪ Allows higher learning rate values

▪ Has regularization effect
▪ Samples within the same minibatch influence each other

▪ Adds “noise” coming from other samples

▪ Reduces need for dropout and other normalizations
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