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Computer vision

= Spatial correlation

= [nvariance to translation,
rotation, lighting...

= Hierarchical structure
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Convolutional neural networks (ConvNets)

= By
= B0

» Extension of multilayer perceptron
» Feed-forward architecture

- Esle

ding blocks suitable for CV problems
ogically inspired
to breakthroughs in many CV problems in recent years
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ImageNet 1K classification challenge (2010-2014)

red fox (100) hen-of-the-woods (100)  ibex ( 100) goldfinch (100) flat-coated retriever (100)

tiger (100) harhster(tOO) porcupme(tOO) stmgray(tOO) Blenheim spaniel (100)
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muzzle (71) hatchet (68) water bottle (68) velvet 68) Ioupe (66)

= 1000 classes

= 1.28 million training
iImages

= 50.000 test images
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hook (66) spotlight (66)

Russakovsky et al. ImageNet Large Scale Visual
Recognition Challenge, 1JCV, 2015
http://www.image-net.org/challenges/LSVRC/




ImageNet 1K classification challenge (2010-2014) ‘
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Vertical edge detection examples
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Learning to detect edges
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Padding

= Allowing filter to go outside input image
» Usually pad with zeros

= Used for adjusting output size
» Example: stride = 1, padding = (kernel size =1) / 2
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Padding - Valid and Same convolutions
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“Valid”: Only convolve with valid pixels

"Same”: Pad so that output size is the same as the input size.
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Stride

= Distance between consecutive kernel applications
» Used for reducing spatial resolution
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Strided convolution




n X nimage f X f filter

padding p stride s

ln+2p —f_l_ 1J 5 ln+2p = b 1J
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Convolutions over volumes

3x3x3 e

bx6x3 ]

3x3x3
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Pooling layer: Max and Average Sl‘ |

Hyperparameters:
= filter size
" 5 stride
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nvNets are a form of deep learning

Many simple nonlinear layers
~eatures are learned from data, not handcrafted

~eatures are hierarchical

Low level Intermediate level High level &




Traditional approach

= Sequence of nonlinear transtormations
» Handcrafted components
» Machine learned components trained independently

SIFT Quantization Soatial L
HoG ¥ . N Histogram [ SVM » Elephant §

(dugtermg) pyrarmd R ;
Design Learning Design Design  Learning
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Basic ConvNet architecture

= Convolution layer

= Pooling layer

= Fully connected layer (like MLP)
= Various normalization layers

= Other...

: Low level i Intermediate level High level I Decision :
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More recent ConvNet architectures

= Contain parallel branches
» Directed acyclic graph (DAG)
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Activations

» |nterpreted as multi-channel “images”
= Network input: 1 channel (grayscale) or 3 channels (RGB)
= Other activations can have more channels

= Channels are also called feature maps

Height

Width

Channels




Activations

= Usually in practice
» Spatial dimensions decrease with depth
= Number of channels increases with depth

Channels
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Fully connected (FC) layer
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= Same as "hidden” layer in MLP
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Types of activation functions

Sigmo'd/ T Rectified fnear (Relly ! Tanh 4
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Fully connected layer -
= Qutput has 1x 1spatial size ."!'
» Last FC layer is Tollowed by softmax function 1
= Converts activations to probabilities |

A, Output
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Local connectivity

= Output neuron is connected only to

"nearby” input neurons
» Neighborhood in spatial coordinates

» Fewer parameters and computation
= Many zero weights




Weight sharing

= All output neurons have the same
set of weights

= Stationarity: same features are of
interest in all parts of image
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Local connectivity + We|ght sharlng = convolution
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Convolution

= Like in image processing, but filter coefficients are learned

Activation function

Input
Output\y >g(W ; J?:)/

Kernel (filter)

= Variant with additive (bias) and multiplicative constants
Scaling (trained) Bias

s

y=cg(W=*x+b)
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Multichannel input

» Fach input has its own filter

= Results are added pixelwise
= Before applying activation i [
function Whp i ©
:+:
90_0g
Output

y=4g ZWC*xc
c !

Index of input channel

| (feature map)
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Multichannel input: equivalent view

= A 3D filter “slides” across multichannel input image

Input width

/ Output height

Input height , i B R el T |
Fllter ___-——::::: ——————— i |

/ Output width

Input channels



Multichannel output

» Computing multiple feature maps of
the same input

= All neurons “looking” at some region
compute feature vector for that region

= Similar to hand-engineered features
(e. g. Gabor) but trained

Yn =9 EWnc*xc
T - |

Output channel
(feature map) Kernel (filter) Input channel




Multichannel output: equivalent view

= Weights of convolutional layer form a 4D tensor

Input width

Input height
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Convolutional layer

= Set of convolutional filters with activation function
= Qutput (spatial) size =

(input size + pad — kernel size + 1) / stride
* Parameter count =
Input channels x output channels x kernel size?
= Operation (multiply + add) count =
input height x input width x input channels x
output height x output width x output channels




=

1 x 1 convolutional layer

= All kernels have spatial size Tx 1
» Used for adjusting channel count
» Fquivalent to applying the same FC layer to each pixel’s
feature vector

» |nput and output have the same spatial size

Development Center Serbia




Pooling

= Combining outputs of nearby input neurons
= Max pooling - - . Kernel size

Yij = ng%x Xi+p,j+q Stride
- S = .
= Average pooling
K
1
Yij =32 Xitp,j+q
p.q=1

= |1 L2 norm...



Example
= Max pooling with kernel size 3 x 3 and stride 2

Max pooling




Multichannel input and output

» Applied independently to each input channel
» [nput channel count = output channel count

z1
Input width 0| .
Podﬁng i (/E Output height
keﬁne|-1 ________________ i i
Input height g I W = Y
i Lot L Output width
o’ Output channels —

Input channels
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Pooling layer

= Only pooling operation, without activation function
» Pooling operation can be nonlinear
= £.g. max pooling
= Pooling operation is differentiable
= Allows backpropagation

= Stride and padding

Development Center Serbia
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Pooling layer

= QOutput (spatial) size =
(input size + padding — kernel size + 1) / stride
= Parameter count = 0
» Operation (multiply + add) count =
output height x output width x channel count x kernel size?

Development Center Serbia




» |ocality is determined by kernel size

Max Max

pooling ,ec | POOlING

> <
255 ] 255
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Cat visual cortex

= Simple, complex, and hyper-complex cells

Electrical signal
from brain

Visual area /3
of brain '
i "‘
3 complex cells
v g simple cells
Q Stimulus f

@ high level
@ mid level
D



Human visual cortex

= Hierarchy of features
from low to high level 1000

To spinal cord
ger muscle ———160-220 ms
-260 ms

S. J. Thorpe, M. Fabre-Thorpe,
Seeking Categories in the Brain, Science, 2001.
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Neocognitron [Fukushima 1980]
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= No supervised learning algorithm
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Convolutional network for handwriting recognition

10 output units B e
fully connected

~ 300 links
layer H3 poooooo
30 hidden units fully conpected
~ 6000 links
layer H2
12 x 16=192
H2.1 H2.1
hidden units ~ 40,000 links
ﬁ from 12 kernels
5x5x8
layer H1 . s
12 x 64 = 768 R
hidden units —_ B .
~20,000 links
from 12 kernels
5x5
ﬁ.a & b e
256 input units i

[Le Cun et al. 1989-1998]
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Fall and rise of convolutional networks

= Rise of Support Vector Machines (SVM) in mid-1990s

» Pros: theory, convex optimization
= Cons: handcrafted features

= Return of convolutional networks from ~2012
= Availability of data and compute resources
» Trained features outperform handcrafted features
= Enables attacking harder problems



Today: convolutional networks are everywhere

= Handwriting = Activity in video |
= Objects in image " [mage captioning :
= Scene understanding » Depth estimation ;
= OCR “in the wild” = Textures

= Traffic signs » Body pose

= Pedestrians
" [mage segmentation
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Image classification

ImageNet Large-scale Visual Recognition Challenge 2012
http://image-net.org/challenges/LSVRC/2012/ilsvrc2012.pdf



AlexNet [Krizhevsky et al. 2012]

= Restarted interest in convolutional
networks in computer vision

T Conv 33, 26 outputs 1 RelU___ |-
" Conv3:3, 38 outputs + RelU___|
|

-

Local normalization
" & | g T~ R ~ - 3\~ _ i ‘ | 1
B .Y SQ: - , 3& =% | 36: e 13 BQ: - 13 dense | |dense) Conv 11X11, 256 OUtpUtS + RelLU
100C . .

384 384 256 Max pooling 2x2 subsampling

Max
Max Max pooling
Stride\] o6 pooling pooling

of 4

55

27

W

55

Local normalization
Conv 11x11, 96 outputs + RelLU




AlexNet

» 60 million parameters
= 332 million operations (multiply-adds)

» Top-5 classification error 16% on ImageNet 1K test
= \Winner of ILSVRC 2012 (classification and detection)
= Previous record 26%

Development Center Serbia




AlexNet training

= Supervised learning, gradient descent w/ backpropagation

» 90 epochs of ImageNet 1K training set (1.3 million images)
= 5-6 days on 2 x NVIDIA GTX 580 (3GB)

= Techniques
= RelLU activation function
» | ocal normalization

= Dropout

= Data augmentation

Development Center Serbia




Local normalization

= Normalize activations by local statistics | e gh
= Eg mean aﬂd Staﬂdard deViatiOﬂ TTTTTT T e e -/Width B |
= Statistics from a (3D) neighborhood Channels

= Encourage ‘competition” for high activations
» Prevent coadaptation of neurons N

= |f all activations are high, they all get reduced by a lot
» Bio-inspired: lateral inhibition




Local normalization

min(N—1,i4+n/2) B
= AlexNet b, =ab /| k+« Z (al ,)?

j=max(0,i—n/2)

= Contrast normalization [Jarret et al. 2009]
= Stats are computed from all channels |
= Weighted mean, weights decay with spatial Height -

distance as 2D Gaussian ° i

/ Mean Channels
_ Xcij — Mcij ey
q




Dropout

» Regularization technique
* |n each forward pass remove a random subset of neurons

in a given layer

» Those neurons do not participate in backpropagation either

= Usually remove each neuron independently with fixed
orobability (usually 0.5)

= Prevents coadaptation of neurons, makes network more
robust




Dropout

= At runtime multiply activations of neurons in layers subject

to dropout

» Factor 1/(1-p), where p is the dropout probability

= Exponential family of networks with shared weights
» Expected activation of a randomly chosen network from the family

= Slows down convergence
* |n AlexNet applied to first two FC layers




Data augmentation b

=

L]
. e

g
1

= Problem: not enough training data (slow labeling)
= Data augmentation: synthesizing a large amount of “realistic
training examples from a small amount of real examples

11
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Types of variations

= [nvariances built into the architecture
» [ ocal translation (due to pooling)
= [ ocal change in lighting (due to pooling, local normalization...)

= Most useful are those that are not built in
= Rotation, scaling, noise...

Development Center Serbia




Data augmentation in AlexNet

= Random crop 224 x 224 pixels

= Horizontal flip: with probability 0.5 replace image with its
mirror image (with respect to vertical axis)

» Lighting augmentation

= For each image choose a random RGB displacement, add it to each
pixel -

= “Realistic” RGB displacement is obtained from training set statistics
» PCA (Principal Component Analysis) of all RGB pixel values




 VGGNet [Simonyan and Zisserman 2014]

= Simplified design, increased depth
= Convolution: kernel 3 x 3, stride 1, padding 1
» Max pooling: kernel 2 x 2, stride 2

" |dea: replace 5 x 5 layer with two 3 x 3

layers
» | ess computation, more nonlinearity

C D E
16 weight 16 weight 19 weight
layers layers layers
input (224 x 224 RGB 1mage)
conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64
maxpool |
conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool
conv3-512 [ conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000

soft-max




VGGNet [Simonyan and Zisserman 2014]

» Top-5 classification error 7.3% on ImageNet 1K test
= Second place in ILSVRC 2014

= 138 million parameters (more than AlexNet)
= 153 billion operations (much slower than AlexNet)

Development Center Serbia




GoogleNet [Szegedy et al. 2014]

* |nception module
= Branching
= 1x 1 convolutions for dimensionality
reduction
= 2 auxiliary loss functions improve
convergence
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GoogleNet [Szegedy et al. 2014]

= 22 layers with weights

= Only 5 million parameters (12x fewer than AlexNet)
= No FC layers
= 1.5 billion operations (2x more than AlexNet)

» Top-5 classification error 6./% on ImageNet 1K test
= Winner of ILSVRC 2014




=

Residual networks (ResNets) [He et al. 2015]

28.2

= Extremely deep (152 layers) [152yers
= Jop-5 classification error 3.6%

on ImageNet 1K test R
= Winner of all 5 disciplines in () (e

shallow

ILSVRC & COCO 2015 ll

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13 ILSVRC'12 ILSVRC'11l ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)




Standardna mre:
. . i
Residual unit weight layer
lrelu
= Small number of convolution layers WEighi'rae"]Zr
with ReLU activation H () :
» Plus normalization layers (not shown) Rezidualna mreza'i
» | earns difference between its input and x i
target output weight layer |
= |mproves convergence F(x) yrelu x |
= Without residual approach, increasing welght laver identity |
depth hurts accuracy F(x) +x

Kaiming He



Residual networks with “bottleneck”

= Reduces the number of parameters and
operations

» |nternal dimension reduction
= Also used in GoogleNet

= Bottleneck units have more channels, but equal

complexity as non-bottleneck units

Sa ,uskim grlom”
256-d ,
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ResNet architectures

—

layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 Tx7, 64, stride 2
3x3 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 [ 1x1,64 ]
comv2x | 36x36 [ gig’g: ]><2 [ggg ]x3 3x3,64 | x3 3x3,64 |x3 3x3,64 |x3
’ ’ i lx1,256_ i l><1,256_ _l><1,256_
i - - - [ 1x1, 128 ] [ 1x1,128 ~ [ 1x1,128 ]
convdx | 28x28 gzg };g %2 ;g }%g x4 | | 3x3.128 | x4 3%3, 128 | x4 3x3.128 | x8
L 978 248 L e | 1x1,512 | 1x1,512 | 1x1,512
i - i - [ 1x1,256 1x1,256 1x1,256
comvdx | 1axid || 60020 x| | X300 k6 | | 3x3.256 | x6 | | 3x3.256 |x23 || 3x3.256 [x36 |
L 9% &9 5 200 | 1x1,1024 1x1,1024 Ix1,1024 e
' - ' ; [ Ix1,512 ] 1x1,512 1x1,512 a |
convSx | Tx7 ;iggﬁ %2 gzg;g w3 || 3x3.512 |x3| | 3x3.512 |x3 3x3,512 | x3
L 0 ! L 2Ie | 11,2048 1x1, 2048 1x1,2048
I1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x 107 3.6x10° 3.8x10° 7.6x10° 11.3x10°
N p—rh —
Kaiming He V5 Miicresoft
Ay

—
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ResNet properties

= Almost no max-pooling
= Reducing spatial dimensions is done in convolution layers

= No FC layers
= No dropout
= No local normalization

= Uses batch normalization
» Further improves convergence

—
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ResNet properties

= [raining
= 120 epochs of ImageNet 1K training (1.3 million images)
» 2-3 weeks on 8 GPUs (a few days for ResNet-18)

» Even ResNet-152 is slightly faster than VGG-16

Development Center Serbia




Batch normalization [loffe and Szegedy 2015]

= Problem: statistics of inputs to a given layer change over time
» The change depends on weight updates in previous layers
= Changes are more severe in deeper layers -
= This limits depth of networks that can be trained i

Trained additive/multiplicative constants =

Xc — E (one value per channel)

Ye = U¢ F Be

All activations in channel ¢ |
. . . . . q /[ [0= g @ 'i;j;j" g ] =
(minibatch size x width x height) By | bl
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Batch normalization

— .

» Reduces dependence on initial weights
= Allows higher learning rate values

» Has reqularization effect
= Samples within the same minibatch influence each other
= Adds “noise” coming from other samples
» Reduces need for dropout and other normalizations

Development Center Serbia
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