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Autoencoders
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Autoencoders

Autoencoder Architecture
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Autoencoders

Conventional Autoencoder

m Encoder: pencoder ( j X)
m Decoder: pgecoder(X j h)

Where h is the code and x is the input.
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Autoencoders

Conventional Autoencoder

m Dimensionality reduction
m Outlier detection
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Autoencoders

Denoising Autoencoder

m Reducing noise in an image
m Removing some object from an image (e.g. watermark)
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Generative models

Generative models
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Generative models

Discriminative & Generative models

Let (x;y) be the inputs and the corresponding labels, in that order

m Discriminative classi ers model the posterior p(y j x) directly, or
learn a direct map from inputs x to the class labels

m Generative classi ers learn a model of joint probability p(x;y)
and make their predictions by using the Bayes rule to calculate
p(y j x), and then picking the most likely label y

p(xjy)p(y)

p(y %)= ==
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Generative models

Discriminative & Generative models
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Generative models

Discriminative models

m Logistic regression

m Linear regression

m Support vector machines
m Random forests

m Traditional neural networks

m etc...
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Generative models

Generative models

m If we are not interested in a supervised problem, we can use
generative model to only learn the distribution of our data p(x)

m After training we can generate new data similar to x

® “What | cannot create, | do not understand”
Richard Feynman
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Generative models

Generative models

m Boltzmann machine
m PixelRNN
m GAN

m Variational autoencoder

One problem with generative models is that they need very large
datasets to work properly.
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Variational Autoencoder

Variational Autoencoder

Variational Autoencoder
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Variational Autoencoder

"The variational autoencoder approach is elegant, theoretically
pleasing, and simple to implement"

lan Goodfellow
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‘ariational Autoencoder

Reminder
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riational Autoencoder

VAE Architecture

Milan llic MATF/Everseen VAE 3rd April 2019 19/47



Variational Autoencoder

What can we now do?

m After training the VAE, we could simply discard the encoder part
and use the decoder to generate new data

m To get the decoders input, we just sample from the Gaussian
distribution and pass that sample

m Generated data instances should come from points with high
probability in datasets distribution space
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Variational Autoencoder

Vizualization of latent space

On the left the Conventional AE latent space and on the right VAEs latent space
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Variational Inference

Variational Inference

Variational Inference
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Variational Inference

m Assume that X = Xi., are the observations, z = z;.,, are hidden
variables and are xed parameters

m First we generate value z from a prior distribution p(z) and then
generate x form conditional distribution p(x j z), we can assume
what form these two distributions take.

= We want to calculate the posterior distribution:

L= R(XiZ)P (2)
p(zjx)= b Zx)dz

= In most cases the posterior is intractable

m Variational inference treats the inference problem as an
approximation problem
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Variational Inference

Approaches

m Deterministic approximation

® Mean eld variational inference
m Stochastic variational inference

m Stochastic approximation (Markov Chain Monte Carlo)

m Metropolis—Hastings algorithm
m Gibbs sampling

m By doing the deterministic approximation we will converge but not
nd the optimal solution

m The main problem with the stochastic approximation is that it is
very slow due to the sampling step
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Variational Inference

Main ldea

m The main idea behind variational methods is to, rst pick a
tractable family of distributions over the latent variables with its
own variational parameters q(zy:mj )

m Then to nd parameters that make it as close as possible to the
true posterior

m Use that g instead of the posterior to make predictions about
future data
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Variational Inference

Kullback-Leibler Divergence

p(x)

DkL(pkq) = E log —— a(x)

Discrete and continuous form:
= Dy (pka) = p(x) log 2&3

= D (pka) = ' p(x) log BE dx

Used to measure similarity between two probability distributions (w.r.t. one of them).

Properties:
u Dy (pkq)  0;8p;q
m Dy (pkg) = 0 p=q
® Dy (pka) & Dk (gkp) in general
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Variational Inference

The Variational Lower Bound

4

Dr(a(z jx)kp(zjx)) = a(z]x)log
’z

a(zjx)
p(z j x)

. p(z j x)
2q(z j x) log azix)

. P(x;2)
L 096

, p(x;z)
ZQ(ZJX) log aZix)

L + logp(x)

z

q(z j x) log p(x)
Z

+logp(x) q(zjx)

@)

log p(x) = L + DkL(q(z j x)kp(z j x))

Minimizing the KL divergence is equal to maximizing the variational
lower bound !
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Variational Inference

The Variational Lower Bound

z

) . p(x;z)
b7 ARG
D o PX1 2P(2) @
IR AT
) . _ , P(z)
= Zq(ZJX)|09p(XJZ)+ ZQ(ZJX)'Og a(z jx)

L = Eq@ixylog p(x j z)  Dk(a(z j x)kp(2))

m The rst term is conceptually the negative reconstruction error
and the second makes our g(z j x) close to the prior p(z)
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Variational Inference

Back to VAE

m Let be the generative parameters and the variational
parameters and assume that x(1; ::;; x(N) are i.i.d:

X .
logp (x;:;xM) = logp (x©)
i=1:N

m Each term on the right hand side can be written as:

logp (x™) = Dre(g (zjxD)kp (xPjz))+ L(; ;xD)
m The variational lower bound is now:

L(; ix®) = Eq @xoylogp (xVj2)  Dyu(a (x2j 2)kp (2))

Milan llic MATF/Everseen VAE 3rd April 2019 29/47



Reparameterization Trick
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Reparameterization Trick

De nition

m In the mid_dle of VAEs architecture there should be sampling from
z q((zjx) N ()

m We cannot do such thing because backpropagation can't go
through a sampling node

m It is often possible to express the random variable z as a
deterministic variable z = g (; x), where is an auxiliary variable
with independent marginal p( ), and g (:) is some vector-valued
function parameterized by

m In our (Gaussian) casez =  + ,where N (0;I)
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Reparameterization Trick

Other distributions

Normal distribution isn't the only one on which we can do this
transformation, there are three groups of distributions:

m Tractable inverse CDF:
m Let U (0;1)andg (; x) betheinverse CDFofq (z ] x).
m Exponential, Cauchy, Logistic...

m Location-scale family:

m As in the example from the last slide, z = location + scale , where is from the
standard distribution.
m Laplace, Student's t, Uniform, Normal...

m Composition:

m Itis often possible to express random variables as different transformations of auxiliary
variables.
m Log-Normal, Gamma, Beta, Chi-Squared, F...
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Reparameterization Trick

Putting everything together
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Results & Applications

RESIIS

Results & Applications
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