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Paper

Diederik P Kingma, Max Welling. Universiteit van Amsterdam.
Auto-Encoding Variational Bayes. December, 2013

Number of citations: 4364
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Github

Implementation on github: [Ili]
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Autoencoders

Autoencoders
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Autoencoder Architecture
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Conventional Autoencoder

Encoder: pencoder (h j x )
Decoder: pdecoder (x j h)

Where h is the code and x is the input.
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Conventional Autoencoder

Dimensionality reduction
Outlier detection
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Denoising Autoencoder

Reducing noise in an image
Removing some object from an image (e.g. watermark)
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Generative models

Generative models
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Discriminative & Generative models

Let (x; y) be the inputs and the corresponding labels, in that order

Discriminative classi�ers model the posterior p(y j x) directly, or
learn a direct map from inputs x to the class labels

Generative classi�ers learn a model of joint probability p(x; y)
and make their predictions by using the Bayes rule to calculate
p(y j x), and then picking the most likely label y

p(y j x) =
p(x j y)p(y)

p(x)
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Discriminative & Generative models
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Discriminative models

Logistic regression

Linear regression

Support vector machines

Random forests

Traditional neural networks

etc...
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Generative models

If we are not interested in a supervised problem, we can use
generative model to only learn the distribution of our data p(x)

After training we can generate new data similar to x

“What I cannot create, I do not understand”

� Richard Feynman
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Generative models

Boltzmann machine

PixelRNN

GAN

Variational autoencoder

One problem with generative models is that they need very large
datasets to work properly.
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Variational Autoencoder

Variational Autoencoder
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VAE

"The variational autoencoder approach is elegant, theoretically
pleasing, and simple to implement"

� Ian Goodfellow
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Reminder
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VAE Architecture
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What can we now do?

After training the VAE, we could simply discard the encoder part
and use the decoder to generate new data

To get the decoders input, we just sample from the Gaussian
distribution and pass that sample

Generated data instances should come from points with high
probability in datasets distribution space
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Vizualization of latent space

On the left the Conventional AE latent space and on the right VAEs latent space
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Variational Inference

Variational Inference
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Set up

Assume that x = x1:n are the observations, z = z1:m are hidden
variables and � are �xed parameters

First we generate value z from a prior distribution p(z) and then
generate x form conditional distribution p(x j z), we can assume
what form these two distributions take.

We want to calculate the posterior distribution:

p� (z j x) =
p� (x j z)p� (z)R

z p� (z; x)dz

In most cases the posterior is intractable

Variational inference treats the inference problem as an
approximation problem
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Approaches

Deterministic approximation
Mean �eld variational inference
Stochastic variational inference

Stochastic approximation (Markov Chain Monte Carlo)
Metropolis–Hastings algorithm
Gibbs sampling

By doing the deterministic approximation we will converge but not
�nd the optimal solution

The main problem with the stochastic approximation is that it is
very slow due to the sampling step
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Main Idea

The main idea behind variational methods is to, �rst pick a
tractable family of distributions over the latent variables with its
own variational parameters q(z1:m j � )

Then to �nd parameters that make it as close as possible to the
true posterior

Use that q instead of the posterior to make predictions about
future data
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Kullback-Leibler Divergence

DKL(pkq) = E
x� p

�
log

p(x)
q(x)

�

Discrete and continuous form:

DKL(pkq) =
P

x p(x) log p(x)
q(x)

DKL(pkq) =
R

x p(x) log p(x)
q(x) dx

Used to measure similarity between two probability distributions (w.r.t. one of them).

Properties:

DKL(pkq) � 0; 8p; q

DKL(pkq) = 0 () p = q

DKL(pkq) 6= DKL(qkp) in general
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The Variational Lower Bound

DKL(q(z j x)kp(z j x)) =
Z

z
q(z j x) log

q(z j x)
p(z j x)

= �
Z

z
q(z j x) log

p(z j x)
q(z j x)

= �
� Z

z
q(z j x) log

p(x; z)
q(z j x)

�
Z

z
q(z j x) log p(x)

�

= �
Z

z
q(z j x) log

p(x; z)
q(z j x)

+ log p(x)
Z

z
q(z j x)

= �L + log p(x)
(1)

log p(x ) = L + DKL (q(z j x )kp(z j x ))

Minimizing the KL divergence is equal to maximizing the variational
lower bound !
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The Variational Lower Bound

L =
Z

z
q(z j x) log

p(x; z)
q(z j x)

=
Z

z
q(z j x) log

p(x j z)p(z)
q(z j x)

=
Z

z
q(z j x) log p(x j z) +

Z

z
q(z j x) log

p(z)
q(z j x)

(2)

L = Eq(zj x ) log p(x j z) � DKL (q(z j x )kp(z))

The �rst term is conceptually the negative reconstruction error
and the second makes our q(z j x) close to the prior p(z)
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Back to VAE

Let � be the generative parameters and � the variational
parameters and assume that x (1) ; :::; x (N) are i.i.d:

log p� (x (1) ; :::; x (N) ) =
X

i= 1:N

log p� (x (i) )

Each term on the right hand side can be written as:

log p� (x (i) ) = DKL(q� (z j x (i) )kp� (x (i) j z)) + L (�; � ; x (i) )

The variational lower bound is now:

L (�; � ; x (i) ) = Eq� (zjx (i) ) log p� (x (i) j z) � DKL(q� (x (i) j z)kp� (z))
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Reparameterization Trick

Reparameterization Trick
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De�nition

In the middle of VAEs architecture there should be sampling from
z � q� (z j x) � N (�; �)

We cannot do such thing because backpropagation can't go
through a sampling node

It is often possible to express the random variable z as a
deterministic variable z = g� (�; x), where � is an auxiliary variable
with independent marginal p(� ), and g� (:) is some vector-valued
function parameterized by �

In our (Gaussian) case z = � + � � � , where � � N (0; I)
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Other distributions

Normal distribution isn't the only one on which we can do this
transformation, there are three groups of distributions:

Tractable inverse CDF:
Let � � U (0; I) and g� (�; x) be the inverse CDF of q� (z j x).
Exponential, Cauchy, Logistic...

Location-scale family:
As in the example from the last slide, z = location + scale � � , where � is from the
standard distribution.
Laplace, Student's t, Uniform, Normal...

Composition:
It is often possible to express random variables as different transformations of auxiliary
variables.
Log-Normal, Gamma, Beta, Chi-Squared, F...
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Putting everything together
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Results

Results & Applications
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