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Probabilistic Graphical Models

● Predict multiple variables that depend on each other

● Represent dependency as a graph

● Model uncertainty
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Probabilistic Graphical Models

● Representation: 

– Markov Networks vs Bayesian Networks
● Inference:

– Marginal inference
– Maximum a posterior (MAP) inference

● Learning

– Known structure
– Structure learning
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Markov Networks vs Bayesian Networks
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Markov Networks vs Bayesian Networks
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Inference

● Marginal inference:

● Maximum a posterior (MAP) inference:



  7 / 36

Applications

● Vision:

– denoising, segmentation, generation, in-painting,...

● NLP:

– POS tagging, generation, translation,...

● Audio

– Super-resolution, speech synthesis, speech recognition, ...

● Bioinformatics:

– Gene expression prediction, brain connectome modeling, …

● …. 
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Markov Random Fields
● Hammersley-Cliford theorem:

Probability distribution that has a strictly positive mass or 
density satisfes one of the Markov properties with respect to 
an undirected graph G if and only if its density can be 
factorized over the cliques (or complete subgraphs) of the 
graph (it is a Gibbs random feld)

● MRF's factorize if at least one of the following conditions is 
fulflled:

– the density is positive 

– the graph is chordal (by equivalence to a Bayesian network)
●
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Pairwise Markov Networks

● Association potential for each variable
● Interaction potential for each edge in the graph
● Partition function Z
● Generative model
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Conditional Random Fields

● Association potential for each variable 
● Interaction potential for each edge in the graph
● Partition function Z
● Discriminative model

f ( y i∣x)

g( y i , y j∣x)
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Discrete vs Continuous

● Discrete:

– structured classifcation

– partition function makes inference challenging
 

● Continuous:

– structured regression

– not tractable in general case 

– closed form expression for Z in special cases 
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Inference

● NP-hard in many cases (both marginal and MAP) 

● Tractability depends on the structure of the graph 
that describes that probability 

● Useful answers still possible 
via approximate inference methods
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Exact inference: variable elimination

● Intuition (example BN – linear chain):

– naive:

– push variables:
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Exact inference: variable elimination

● Factor graph:

● For each variable Xi (ordered according to O):

– Multiply all factors Φi containing Xi

– Marginalize out Xi to obtain new factor τ

– Replace the factors in Φi by τ
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Exact inference: variable elimination
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Exact inference: variable elimination

● Running time:

– M: maximum size of any factor during the elimination process

– m: number of variables

● Diferent ordering dramatically alter 
the running time of the variable elimination algorithm

● It is NP-hard to fnd the best ordering

● Heuristics:

– Min-neighbors: Choose a variable with the fewest dependent variables

– Min-weight: Choose variables to minimize
 the product of the cardinalities of its dependent variables

– Min-fll: Choose vertices to minimize
 the size of the factor that will be added to the graph
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Belief propagation

● Variable elimination (VE) can answer marginal queries
 of the form P(Y∣E=e)

● If we want to ask the model for another query, 
e.g. P(Y2∣E2=e2), 
we need to restart the algorithm from scratch (wasteful)

● VE produces many intermediate factors τ 
as a side-product of the main computation

– same factors that we needed for other marginal queries 

– after frst run of VE, we can easily answer new marginal 
queries at essentially no additional cost
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Belief propagation

● Intuition: 

– if we apply VE algorithm on a tree
 in order to compute a marginal p(Xi), 
 we can easily fnd an optimal ordering for this problem
 by rooting the tree at Xi
 and iterating through the nodes in post-order

– when xk is marginalized out, it receives all the signal
 from variables underneath it from the tree

– this signal can be completely summarized in a factor τ(xj)

– τ(xj)  as a message that xj sends to xk
 to summarize all it knows about its children variables
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Belief propagation

● If we apply VE algorithm on a tree
 in order to compute a marginal p(Xk) 

– root the tree at Xk

– factors can be reused

● Message passing algorithm:

– Node xi sends a message to a neighbor xj 
whenever it has received messages from all nodes besides xj

– There will always be a node with a message to send, 
unless all the messages have been sent out

– Terminates after precisely  2|E| steps, 
since each edge can receive messages only twice: 
once from xi→xj, and once more in the opposite direction
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Sum-product message passing

● While there is a node xi ready to transmit to xj, send the message:

● This message is precisely the factor τ that xi would transmit to xj 
during a round of variable elimination with the goal of computing p(xj)

● Any marginal query over xi can be answered in constant time 
using the equation:
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Max-product message passing

● Answers MAP inference queries: 

● While there is a node xi ready to transmit to xj, send the message:

● Any MAP query over xi can be answered in constant time 
using the equation:

● Property that makes this work is the distributivity 
of both the sum and the max operator over products

● Most probable assignment by keeping back-pointers 
during the optimization procedure
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Junction tree

● Turn a graph into a tree of clusters that are 
amenable to the variable elimination,
then perform message-passing on this tree
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Loopy belief propagation

● Approximate

● Disregard loops in the graph and perform message passing anyway

● Fixed number of steps or until convergence 

● Messages are typically initialized uniformly

● Given an ordering on the edges, 
at each time t we iterate over a pair of adjacent variables xi,xj 
in that order and simply perform the update:
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Application: POS tagging with CRF
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Application: POS tagging with CRF
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Prediction

● Structured prediction = MAP inference

● More efcient algorithms:

– Graphcuts
– ILP
– Dual decomposition
– …
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Learning

● Log-likelihood:
● Gradient:
● Hessian:
● Calculating the log-partition part of the gradient 

requires one full inference for each data point
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Application: 
Image segmentation with CRF
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Continuous Markov Fields

● Structured regression
● Partition function has no closed form solution 

(in general case)
● Efcient in special cases: 

– quadratic potentials/Gaussian model



  30 / 36

Continuous CRF

Y ~ Multivariate Gaussian distribution
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Continuous CRF

● MAP inference: 

● Learning: maximum likelihood 
● Convex
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GCRF: applications

● Bioinformatics, 
healthcare, 
energy forecasting, 
sensor networks,
weather forecasting,

…
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Structure learning

● Sparsity inducing regularization
● Chow-Liu
● BIC/AIC
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Structured prediction models vs neural networks

● In fully observed models, the likelihood is convex; 
in latent variable models it is not

● If you add connections among the nodes in the output layer, 
and if you have a good set of features, 
then sometimes you don’t need a hidden layer 

● If you can aford to leave out the hidden, 
then in practice you always want to do so, 
because this avoids all of the problems with local minima

*[Sutton, Charles, and Andrew McCallum. "An introduction to conditional random felds." 
Foundations and Trends® in Machine Learning 4.4 (2012): 267-373.]
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Structured prediction models vs neural networks

● For harder problems one might expect 
that even after modeling output structure, 
incorporating hidden state will still yield additional beneft

● Once hidden state is introduced into the model, 
whether it be a neural network or a structured model, 
it seems to be inevitable that convexity will be lost
(at least given our current understanding of machine 
learning)

*[Sutton, Charles, and Andrew McCallum. "An introduction to conditional random felds." 
Foundations and Trends® in Machine Learning 4.4 (2012): 267-373.]
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