Meta Learning

MiloS Jordanski, PhD student at Faculty of Mathematics

Meta Learning

* Learning quickly:
* Recognizing objects from only a few examples
* New skills after just minutes of experience

* Integrate prior experience with a small amount of new information
* Learning to learn

* Applications:
* Supervised Regression and Classification
* Reinforcement Learning
* Unsupervised Learning

How to learn quickly?

.- Transfer Learning: train on one task, transfer to a new task:
. Just try it and hope for the best
* Diversity: the more varies the training, the more likely transfer is to succeed
Fine tune on a new task
New architectures suitable for transfer: Progressive Networks

Multi-task transfer: train on a many tasks, transfer to a new task
Requires variety!
Meta-Learning: learn how to learn many tasks:

RNN based meta-learning
- Gradient based meta-learning

Meta-Learning Problem Set-Up

* Model f:x — a

* Task T = {L(xq,aq, ... Xy, ay), q(x1), q(X¢11|%¢, a)}
e L(xq,a4,..xy,ay) —loss function
* q(xq) - distribution over initial observations
* q(x¢41|xe, ap) —transition distribution

* H— episode length
* p(T) — distribution over tasks

K-shot learning

* Goal: Train a model to learn a new task T;~p(T) from only K samples
drawn from q; and feedback L, generated by T;.

* Meta-training:
* task Tj~p(T)
* Model fis trained with K samples and feedback from the corresponding loss
Lt.
]
* Test a model f on new samples from T;

* Model f is improved by considering how the test error on new data from g
changes with respect to the parameters.

* Test error on sampled tasks T; serves as the training error of the meta-
learning process

Meta-Learning Training

* Model represented by a parametrized function fy
* When adapting to a new task T;~p(T):

0, =0 —aVgLr, (fg)

* The model parameters are trained by optimizing for the performance
of fGi' with respect to 6 across tasks sample p(T):

min > Lr(fo) = Y Lr(fo-avpin o))

Ti~p(T) Ti~p(T)

Meta-Learning Training

* Meta-optimization via stochastic gradient descent (SGD):

— meta-learnin
9 — 9 — ﬁ VQ z LTl' (fgl,) 9 -—-- Iea:ning/adagtation
VL;
Ti~p (T) VL,
Vﬁl ’/,/” 95
9*.,/,//’ \\\\\\. §
0 0-8% D Lr(fo-avoir, o)) V-
Ti~p(T)

* Meta-gradient update involves a gradient through a gradient
* Computing Hessian is computationally inefficient
* First —order approximation

Model-Agnostic Meta-Learning

* Input: p(T) distribution over tasks; a, — step size hyperparameters
* Randomly initialize 6

* While not done do:
« Sample batch of tasks T;~p(T)

* Forall T; do:
* Evaluate Vg L7, (fg) with respect to K examples
« Compute adapted parameter with gradient descent: 6; = 0 — aVgLr (fo)

 End for
* Update: 6 « 6 — [V Zlep(T)LTi(fH')

Supervised Regression and Classification

* Task T; generate K i.i.d observations x from q;, H=1
* Regression — MSE:
. o1 2
Lr,(fo) = z ”fe(xj) —)’JHZ
xJ,yI~T;
* Classification — cross entropy:

Lr,(fe) = Z yllogfe(x)) + (1 —y/)([1 — logfe(x’))

xJ,yJ~T;

MAML For Few-Shot Supervised Learning

* Input: p(T) distribution over tasks; a, — step size hyperparameters
* Randomly initialize 6

* While not done do:
« Sample batch of tasks T;~p(T)

* Forall T; do:
» Sample K datapoints D = {x/,y/} from T;
* Evaluate VgLy (fg) usingDand Ly,
« Compute adapted parameter with gradient descent: 8; = 6 — aVglLr (fo)
 Sample datapoints D; = {xj,yj} from T; for the meta-update

* End for
* Update: 0 « 6 — Vg Xy, .yry L1,(f 97) using each D; and Lr,

Reinforcement Learning

- Each RL task T, contains an initial state distribution q. (x), transition
distribution q. (x 1%, a) and loss function L :

H
LTz‘ (f@) — _Emt,atwfg,qTi [thl Rt (CBU a’t)]

- In K-shopt RL, K rollouts from f and task T. may be used for
adaptation on a new task T..

MAMIL for Reinforcement Learning

* Input: p(T) distribution over tasks; a, [— step size hyperparameters
* Randomly initialize 6

* While not done do:
« Sample batch of tasks T;~p(T)

* For all T; do:
* Sample K trajectories D = {(x4,aq ..., Xy, ay)} using fg in T;
* Evaluate VgL (fp) using D and L,
« Compute adapted parameters with gradient descent: 8; = 6 — aVoLr,(fp)
 Sample trajectories D; = {(x1,a ..., Xy, ay)} using fg in T;
* End for
* Update: 0 « 6 — Vg Xir..yry L1,(f9r) using each D; and Lr,

Results - Regression

. Sine wave with amplitude varies within [0.1, 5.0] and phase varies
within [0,]

. X uniformly from [-5, 5]

- Loss: mean-squared error

- Neural Network model with 2 hidden layers of size 40 with RelLU

- One update with K sample, ¢ = 0.01

.- Baselines:

- pretraining on all of the tasks and fine-tuning with gradient descent on the
K provided points
- true amplitude and phase

Results - Regression

MAML, K=5 MAML, K=10 pretrained, K=5, step size=0.01 pretrained, K=10, step size=0.02

-6 -4 -2 0 2 4 -6 -4 2 0 2 4 6 6 4 -2 0 2 4 -6 -4 -2 0 2 4 6

pre-update =+ 1lgradstep ==+ 10gradsteps — groundtruth A A usedforgrad = pre-update -+ 1gradstep ==- 10 grad steps

Results - Classification

- Omniglot dataset: 20 instances of 1623 characters from 50 different
alphabets. Each instance was drawn by a different person

- Minilmagenet dataset: involves 64 training classes, 12 validation
classes, and 24 test classes

- 4 modules with a 3 x 3 convolutions and 64 filters, followed by
batch normalization, a ReLU nonlinearity, and 2 x 2 max-pooling

. For Omniglot, strided convolutions instead of max-pooling.

Omniglot results

5-way Accuracy

20-way Accuracy

Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% = =
MAML, no conv (ours) 89.7+1.1% | 97.5+0.6% - -
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.7+£0.4% | 99.94+0.1% | 95.8 +-0.3% | 98.9 + 0.2%

Minilmage results

5-way Accuracy

Minilmagenet (Ravi & Larochelle, 2017) 1-shot 5-shot

fine-tuning baseline 28.86 + 0.54% 49.79 £ 0.79%
nearest neighbor baseline 41.08 + 0.70% 51.04 + 0.65%
matching nets (Vinyals et al., 2016) 43.56 + 0.84% 55.31 +0.73%
meta-learner LSTM (Ravi & Larochelle, 2017) | 43.44 +0.77% 60.60 + 0.71%
MAML, first order approx. (ours) 48.07 +1.75% | 63.15 £+ 0.91%
MAML (ours) 48.70 + 1.84% | 63.11 + 0.92%

Results - Reinforcement Learning

- Neural network policy with two hidden layers of size 100, with RelLU
nonlinearities
- Planar cheetah and a 3D quadruped

.- Baselines:
- pretraining one policy on all of the tasks and then fine-tuning
- training a policy from randomly initialized weights
- an oracle policy

Results - Reinforcement Learning

.- 2D Navigation

0.6

point robot, 2d navigation

[-
S
-

average return (log scale)

-
-
-
-
e
<

MAML (ours)
pretrained
random
oracle

=
-
-
e
-
-
-
e

-
-
= o
> i

number of gradient steps

0.5
0.4
0.3
0.2
0.1
0.0

-0.1

-0.2

pre-update
3 steps

% % goal position

-0.5

-0.4

-0.2 -0.1 0.0

0.1 0.2

0.3

________ -
—
....................... .
2 3
i pretrained
05
0.4
03
0.2
&l pre-update
oof | — 3 steps
01} Y % goal position
%5 —0s =03 -0z o1 0.0 0.1 0.2 03

average return
|

Results - Reinforcement Learning

- Locomotion - high-dimensional locomotion tasks with the MuloCo

simulator
- planar cheetah
- a 3D quadruped

ant, forward/backward

__

half-cheetah, goal velocity

500

400
—— MAML (ours)
--a-- pretrained

200 el ke random

—%:= oracle

300

* 100

number of gradient steps number of gradient steps number of gradient steps number of gradient steps

THANKS!

