
Understanding Black-Box predictions via
Influence Functions 1

Marko Milanovic Everseen/MATF

Belgrade, February 26, 2020

1[Wei Koh, Liang 2017 ICML]

Introduction

Model interpretability: why does a model predict what it predicts?

I Make better decisions

I Improve the model

I Provide end-user with explanations

Introduction

Many works has been done on model interpretability:

I Which part of the input is most responsible for the model’s
prediction?

I What inputs activate neurons the most?

I Can the model be replaced with a simpler interpretable model?

All these methods consider models as fixed!

Introduction

Many works has been done on model interpretability:

I Which part of the input is most responsible for the model’s
prediction?

I What inputs activate neurons the most?

I Can the model be replaced with a simpler interpretable model?

All these methods consider models as fixed!

Introduction

Influence functions enable us to study models as a function of their
training data

Influence functions is a technique from robust statistics that helps
us estimate the effect of removing particular training point from
dataset

They haven’t been used in ML because:

I Require expensive second derivative calculation

I Assume differentiability

I Assume convexity

Introduction

Influence functions enable us to study models as a function of their
training data

Influence functions is a technique from robust statistics that helps
us estimate the effect of removing particular training point from
dataset

They haven’t been used in ML because:

I Require expensive second derivative calculation

I Assume differentiability

I Assume convexity

Influence functions

X - input space
Y - output space
z, ..., zn - training points, where zi = (xi, yi) ∈ X × Y
L(zi , θ) - loss for a training point z and parameters θ ∈ Θ
R(θ) = 1

n

∑n
i=1 L(zi , θ) - the empirical risk.

θ̂
def
= argminθ∈Θ

1
n

∑n
i=1 L(zi , θ) - the empirical risk minimizer.

It is also assumed that empirical risk is twice-differentiable and
strictly convex in θ

Influence functions

The goal is to understand the effect of training points to model’s
predictions. How would the model’s predictions change if didn’t
have particular training point?

Let’s study the change in model parameters due to removing a
point z from training set:

θ̂−z
def
= argminθ∈Θ

1

n

∑
zi 6=z

L(zi , θ)

Than, the change is given by:

θ̂−z − θ̂

Not feasible!

Influence functions

The goal is to understand the effect of training points to model’s
predictions. How would the model’s predictions change if didn’t
have particular training point?

Let’s study the change in model parameters due to removing a
point z from training set:

θ̂−z
def
= argminθ∈Θ

1

n

∑
zi 6=z

L(zi , θ)

Than, the change is given by:

θ̂−z − θ̂

Not feasible!

Influence functions

Influence functions give us an efficient approximation:

θ̂ε,z
def
= argminθ∈Θ

1

n

n∑
i=1

L(zi , θ) + εL(z, θ) (1)

Influence of upweighting z on the parameters θ̂ is given by:

Iup,params(z)
def
=

dθ̂(ε,z)

dε

∣∣∣∣
ε=0

= −H−1

θ̂
∇θL(z, θ̂) (2)

Influence functions

Influence functions give us an efficient approximation:

θ̂ε,z
def
= argminθ∈Θ

1

n

n∑
i=1

L(zi , θ) + εL(z, θ) (1)

Influence of upweighting z on the parameters θ̂ is given by:

Iup,params(z)
def
=

dθ̂(ε,z)

dε

∣∣∣∣
ε=0

= −H−1

θ̂
∇θL(z, θ̂) (2)

Influence functions

Influence functions give us an efficient approximation:

θ̂ε,z
def
= argminθ∈Θ

1

n

n∑
i=1

L(zi , θ) + εL(z, θ) (1)

Influence of upweighting z on the parameters θ̂ is given by:

Iup,params(z)
def
=

dθ̂(ε,z)

dε

∣∣∣∣
ε=0

= −H−1

θ̂
∇θL(z, θ̂) (2)

Influence on parameters - proof
The Hessian matrix (H−1

θ̂
exists by assumptions):

Hθ̂

def
= ∇R(θ) =



n

n∑
i=

∇θL(z, θ̂) (3)

The perturbed parameters θ̂ε,z can be written as:

θ̂ε,z = argmin
θ∈Θ

{R(θ) + εL(z, θ)} (4)

Define the parameter change:

∆ε = θ̂ε,z − θ̂ (5)

The quantity we’re interested into:

dθ̂ε,z
dε

=
d∆ε

dε
(6)

Influence on parameters - proof
The Hessian matrix (H−1

θ̂
exists by assumptions):

Hθ̂

def
= ∇R(θ) =



n

n∑
i=

∇θL(z, θ̂) (3)

The perturbed parameters θ̂ε,z can be written as:

θ̂ε,z = argmin
θ∈Θ

{R(θ) + εL(z, θ)} (4)

Define the parameter change:

∆ε = θ̂ε,z − θ̂ (5)

The quantity we’re interested into:

dθ̂ε,z
dε

=
d∆ε

dε
(6)

Influence on parameters - proof

θ̂ε,z is the minimizer of the empirical risk (4):

0 = ∇R(θ̂ε,z) + ε∇L(z, θ̂ε,z) (7)

Since θ̂ε,z → θ̂ as ε→ 0 we get by Taylor expansion:

0 ≈
[
∇R(θ̂) + ε∇L(z, θ̂)

]
+
[
∇R(θ̂) + ε∇L(z, θ̂)

]
∆ε

(8)

Solving for ∆ε:

∆ε ≈ −
[
∇R(θ̂) + ε∇L(z, θ̂)

]−
[
∇R(θ̂) + ε∇L(z, θ̂)

] (9)

Influence on parameters - proof

Since θ̂ minimizes R and keeping only O(ε) we get:

∆ε ≈ −∇R(θ̂)−∇L(z, θ̂)ε (10)

Influence on test examples

The influence of upweighting z on the loss at a test point ztest

Iup,loss(z)
def
=

dL(ztest, θ̂ε,z)

dε

∣∣∣∣
ε=0

= ∇θL(ztest, θ̂)
>dθ̂ε,z
dε

∣∣∣∣
ε=0

= −∇θL(ztest, θ̂)>H−
θ̂
∇θL(z, θ̂)

(11)

Influence on test examples

The influence of upweighting z on the loss at a test point ztest

Iup,loss(z)
def
=

dL(ztest, θ̂ε,z)

dε

∣∣∣∣
ε=0

= ∇θL(ztest, θ̂)
>dθ̂ε,z
dε

∣∣∣∣
ε=0

= −∇θL(ztest, θ̂)>H−
θ̂
∇θL(z, θ̂)

(11)

Relation to Euclidean distance

To find a training point most relevant to a test point it is natural
to observe the closest point in Euclidean space (equivalent to
xtest · x)

Logistic regression:

I p(y|x) = σ(yθ>x) where y ∈ (−1, 1) and σ(t) = 1
1+exp(−t)

I L(z, θ) = log(1 + exp(−yθ>x))

I ∇θL(z, θ) = −σ(−yθ>x)yx

I Hθ = 
n

∑n
i= σ(θ>xi)σ(−θ>xi)xix>i

Relation to Euclidean distance

To find a training point most relevant to a test point it is natural
to observe the closest point in Euclidean space (equivalent to
xtest · x)

Logistic regression:

I p(y|x) = σ(yθ>x) where y ∈ (−1, 1) and σ(t) = 1
1+exp(−t)

I L(z, θ) = log(1 + exp(−yθ>x))

I ∇θL(z, θ) = −σ(−yθ>x)yx

I Hθ = 
n

∑n
i= σ(θ>xi)σ(−θ>xi)xix>i

Relation to Euclidean distance

Iup,loss(z, ztest) =

ytesty · σ(−ytestθ>xtest) · σ(−yθ>x) · x>testH−θ̂ x

Relation to Euclidean distance

Iup,loss(z, ztest) =

ytesty · σ(−ytestθ>xtest) · σ(−yθ>x) · x>testH−θ̂ x

Efficiently Computing Influence

There are two computational challenges to get Iup,loss(z, ztest):

I forming and inverting Hessian matrix Hθ̂ which requires
O(np + p) operations

I we often want to calculate the influence Iup,loss(z, ztest)
across all training points zi

Idea is to avoid explicitly computing H−1

θ̂
; instead Hessian-vector

products (HPVs) are used to efficiently approximate

stest = H−1

θ̂
∇θL(ztest, θ̂)

and than compute

Iup,loss(z, ztest) = −stest · ∇θL(z, θ̂)

Efficiently Computing Influence

There are two computational challenges to get Iup,loss(z, ztest):

I forming and inverting Hessian matrix Hθ̂ which requires
O(np + p) operations

I we often want to calculate the influence Iup,loss(z, ztest)
across all training points zi

Idea is to avoid explicitly computing H−1

θ̂
; instead Hessian-vector

products (HPVs) are used to efficiently approximate

stest = H−1

θ̂
∇θL(ztest, θ̂)

and than compute

Iup,loss(z, ztest) = −stest · ∇θL(z, θ̂)

Efficiently Computing Influence
Conjugate Gradients

Transform matrix inversion problem into an optimization problem:

H−
θ̂
v ≡ argmint{

1

2
t>Hθ̂t− v

>t}

This can be solved with CG that only require evaluation of Hθ̂t
which takes O(np) time

Exact solution takes p iterations, while in practice good
approximation can be obtained after fever iterations

Efficiently Computing Influence
Stochastic Estimation2

With large datasets CG can be still very slow (each iteration goes
through all training points) ...

H−j
def
= =

j∑
i=0

(I −H)i

Rewrite recursively:

H−j = I + (I −H)H−j−

The key is that at each iteration H can be replaced with any
unbiased estimator of H. Concretely, zi can be sampled at random
and ∇2

θL(zi, θ̂) can be used as unbiased estimator.

2[Agarwal et al., 2016]

Efficiently Computing Influence
Stochastic Estimation - procedure

1. Uniformly sample t training points zs , ..., zst

2. Define H̃− v = v

3. Recursively compute H̃−j v = v + (I −∇θL(zi, θ̂))H̃−j−v

4. Repeat steps 1-3. r times and average results

With this procedure we can compute influence Iup,loss(z, ztest) in
O(np+ rtp) time. It is empirically shown that setting rt = O(n)
gives accurate results

Validations and Extensions
Influence Functions vs. leave-one-out retraining

To asses the accuracy of influence func-
tions − 1

nIup,loss(z, ztest) is compared with L(ztest, θ̂−z)−L(ztest, θ̂)

Logistic regression model is trained on 10-class MNIST dataset

Validations and Extensions
Influence Functions vs. leave-one-out retraining

To asses the accuracy of influence func-
tions − 1

nIup,loss(z, ztest) is compared with L(ztest, θ̂−z)−L(ztest, θ̂)

Logistic regression model is trained on 10-class MNIST dataset

Validations and Extensions
Non-convexity and non-convergence

What if θ̃ are obtained by running SGD with early stopping on
non-convex objectives?

Clearly θ̃ 6= θ̂ and as a result Hθ̃ could have negative eigenvalues.

Convex quadratic approximation of the loss:

L̃(z, θ) = L(z, θ̃) +∇L(z, θ̃)>(θ − θ̃)+
1

2
(θ − θ̃)>(Hθ̃ + λI)(θ − θ̃)

Influence functions Iup,loss are computed using L̃

Validations and Extensions
Non-convexity and non-convergence

What if θ̃ are obtained by running SGD with early stopping on
non-convex objectives?

Clearly θ̃ 6= θ̂ and as a result Hθ̃ could have negative eigenvalues.

Convex quadratic approximation of the loss:

L̃(z, θ) = L(z, θ̃) +∇L(z, θ̃)>(θ − θ̃)+
1

2
(θ − θ̃)>(Hθ̃ + λI)(θ − θ̃)

Influence functions Iup,loss are computed using L̃

Validations and Extensions
Non-differentiable losses

What if ∇θL or ∇2
θL do not exist?

Linear SVM model is trained on MNIST 1s vs. 7s classification

Loss function: Hinge(s) = max(0, 1−s)

Differentiable loss function:
SmoothHinge(s, t) = tlog(1 + exp(1−s

t))

Validations and Extensions
Non-differentiable losses

Correlation remained high over a wide range of t:

I t = 0.001, Pearson’s R = 0.95

I t = 0.1, Pearson’s R = 0.91

Applications
1.Understanding model behavior

Influence functions reveal insights about how models rely on the
training data.

Problem: dog vs. fish classification (900 images from both classes
were taken from ImageNet)

Two models are compared:

I Inception V3 model with all but the top layer frozen

I SVM with RBF kernel

Applications
1. Understanding model behavior

Applications
2. Debugging domain mismatch

Influence functions can identify the training examples most
responsible for the errors, helping model developers identify domain
mismatch.

Case study: predict whether a patient will be readmitted.
Data set: 20K diabetic patients from 100+ US hospitals each
represented by 127 features (3 out of 24 children under the age of
10 were readmitted)
Domain mismatch: 20 out of 21 healthy children were filtered out

Applications
2. Debugging domain mismatch

What caused the model to make those mistakes?

Observing model parameters didn’t help (14 out of 127 parameters
were bigger than one indicating a child)

For a random ztest that model made a mistake −Iup.loss(zi, ztest)
is calculated for each training point zi. This clearly highlighted 4
training children (absolute value of the influence is 30-40 times
higher than the next most influential point)

Applications
3. Fixing mislabeled examples

Key idea is to flag the training points that exert the most influence
on the model.

Since test set is not available influence of zi is measured by
Iup,loss(zi, zi)

Case study: email spam classification
labels of 10% of the training data were randomly flipped

Applications
3. Fixing mislabeled examples

Prioritizing checking training examples using influence functions
outperforms baseline method that selects the points based on train
loss

Applications
4. Adversarial training examples

How would the model’s predictions change if a training input were
modified?

zδ
def
= (x+ δ, y)

θ̂zδ,−z - empirical risk minimizer on the training points with zδ in
place of z

θ̂ε,zδ,−z
def
= argminθ


n

∑n
i= L(zi, θ) + εL(zδ, θ)− εL(z, θ)

Applications
4. Adversarial training examples

How would the model’s predictions change if a training input were
modified?

zδ
def
= (x+ δ, y)

θ̂zδ,−z - empirical risk minimizer on the training points with zδ in
place of z

θ̂ε,zδ,−z
def
= argminθ


n

∑n
i= L(zi, θ) + εL(zδ, θ)− εL(z, θ)

Applications
4. Adversarial training examples

An analogous calculation for Iup,params yields:

dθ̂ε,zδ,−z
dε

∣∣∣∣
ε=

= Iup,params(zδ)− Iup,params(z)

= −H−
θ̂

(∇θL(zδ, θ̂)−∇θL(z, θ̂))

(12)

If we assume that L is differentiable in θ and x then as ||δ|| → 0
we have

∇θL(zδ, θ̂)−∇θL(z, θ̂) ≈ [∇x∇θL(z, θ̂)]δ

Thus:
dθ̂ε,zδ,−z
dε

∣∣∣∣
ε=

≈ −H−
θ̂

[∇x∇θL(z, θ̂)]δ

Applications
4. Adversarial training examples

An analogous calculation for Iup,params yields:

dθ̂ε,zδ,−z
dε

∣∣∣∣
ε=

= Iup,params(zδ)− Iup,params(z)

= −H−
θ̂

(∇θL(zδ, θ̂)−∇θL(z, θ̂))

(12)

If we assume that L is differentiable in θ and x then as ||δ|| → 0
we have

∇θL(zδ, θ̂)−∇θL(z, θ̂) ≈ [∇x∇θL(z, θ̂)]δ

Thus:
dθ̂ε,zδ,−z
dε

∣∣∣∣
ε=

≈ −H−
θ̂

[∇x∇θL(z, θ̂)]δ

Applications
4. Adversarial training examples

Finally, differentiating w.r.t δ gives us

Ipert,loss(z, ztest)>
def
= ∇δL(ztest, θ̂zδ,−z)>

∣∣∣∣
δ=0

= −∇θL(ztest, θ̂)>H−
θ̂
∇x∇θL(z, θ̂)

(13)

Applications
4. Adversarial training examples

Creating adversarial training examples:

I Initialize z̃i = zi

I Iterate z̃i :=
∏

(z̃i + α · sign(Ipert,loss(z̃i, ztest)))

I Retrain the model after each iteration

∏
- denotes projection onto the set of valid images that share the

same 8-bit representation with zi

Applications
4. Adversarial training examples

Experiment: dog vs. fish classification using Inception network
with all but the top layer frozen. Originally the model correctly
classified 591/600 images

Results:

I 335/591 (57%) images were flipped by perturbing 1 training
example

I 455/591 (77%) images were flipped by perturbing 2 training
examples

I 590/591 (99%) images were flipped by perturbing 10 training
examples

Applications
4. Adversarial training examples

Observations:

I Even though the change in pixel values is small, the change in
final NN layer is significantly larger

I More training examples reduce chances for training attacks

I Ambiguous or mislabeled examples are effective points to
attack

Implementations

I Tensorflow (author’s implementation):
https://github.com/kohpangwei/influence-release/

I PyTorch:
https://github.com/nimarb/pytorch influence functions

Thank you!

Questions?

References

Koh, P. W., & Liang, P. (2017) Understanding Black-box
Predictions via Influence Functions

Agarwal, N. et al. Second-Order Stochastic Optimization for
Machine Learning in Linear Time

	References

