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Image Captioning Problem

I For an image provide a caption describing it
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COCO dataset

I Large-scale object detection, segmentation, and captioning dataset.

I > 200K labeled images

I 5 captions per image
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Maximal Likelihood Formulation

I Assume a probability distribution p(y|x, θ) parametrized by learnable parameters θ

I Likelihood:
N∏
i=1

p(yi |xi , θ)

I Negative log likelihood loss:

L(θ) = −
N∑
i=1

log p(yi |xi , θ)

= −
N∑
i=1

Ni∑
j=1

log p(y ij |y i1:j−1, x
i , θ)
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Maximal Likelihood Formulation Issue

I In training, since the labels are known log p(y ij |y i1:j−1, x
i , θ) can be computed if

p(·|·, θ) is defined

I While doing prediction, true labels are unavailable and model predictions are fed
instead
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Show and Tell Architecture
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Maximal Likelihood Formulation Issue

I This leads to accumulation of errors

I There are methods to mitigate this problem, but with their own problems

I Also, MLE criterion need not correlate with human judgement too well

I Alternative path - optimize different metrics
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Image Captioning Metrics

I BLEU

I METEOR

I ROUGE

I CIDEr

I SPICE
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BLEU

I Assumes output sentence of length N and 1 or more reference sentences are
provided.

I A word of the output sentence has a maximal number m of occurrences among all
reference sentences and occurence count of n in the output sentence

I Its score is min(n,m)/N

I Such scores are averaged over all sentences and all words in them to obtain BLEU
score

I The score is between 0 and 1

I BLEU-N is a generalization to word N-grams
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METEOR

I Performs alignment of output sentence with one of the reference sentences by
matching words so that any word is matched to at most one word from another
sentence

I Largest alignment is selected and if there are several, then the one with least
matching crosses

I Precision and recall for the alignment are computed and F mean is computed as
10PR/(R + 9P)

I Penalty is computed as 0.5 times cubed number of chunks consisting of adjacent
matched words divided by the number of matched words

I Score is computed as F · (1− Penalty)

I The best score for all reference sentences is reported
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ROUGE-N

I Compute precision and recall of N-grams in output sentence and in reference
sentence and then compute F measure

I Larger N puts more emphasis on word order
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CIDEr

I Compute TF-IDF weights for each N-gram appearing in all sentences related to all
images.

I Represent each sentence by a vector of TF-IDF values of its N-grams

I CIDErn for a candidate sentence and a set of reference sentences is an average of
cosines between candidate sentence representation and representations of
reference sentences

I CIDEr is an average of CIDErn for n = 1, . . . , 4
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SPICE

I Correlation of all previous metrics to human judgement has been disputed

I Sentences are parsed and their parse trees are converted to scene graphs

I Graphs for output and reference sentences are compared

I Details are out of scope

I Drastically higher correlation with human judgement than previous metrics

I Great, but how to optimize such metrics??
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The Goal

I Policy πθ(a|s) is a parametrized distribution (can be a neural network) over
actions, given a state

I Environment state transition probability is p(st+1|st , at)
I Probability of a trajectory τ under policy πθ:

pθ(τ) = pθ(s0, a0, . . . , sT , aT ) = p(s0)
T∏
t=0

πθ(at |st)p(st+1|st , at)

I Reward for trajectory τ :

r(τ) =
T∑
i=0

r(st , at)

I The expected reward:
J(θ) = Eτ∼pθ(τ)[r(τ)]

I The goal is to maximize the expected reward with respect to θ
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Gradient of The Expected Reward

I Gradient can’t pass through expectation, but:

∇θJ(θ) = ∇θEτ∼pθ(τ)[r(τ)]

= ∇θ
∫

r(τ)pθ(τ)dτ

=

∫
r(τ)∇θpθ(τ)dτ

=

∫
r(τ)
∇θpθ(τ)

pθ(τ)
pθ(τ)dτ

=

∫
r(τ)[∇θ log pθ(τ)]pθ(τ)dτ

= Eτ∼pθ(τ)[r(τ)∇θ log pθ(τ)]
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Gradient of The Expected Reward

I Consider ∇θ log pθ(τ):

∇θ

[
log p(s0) +

T∑
t=0

(log πθ(at |st) + log p(st+1|st , at))

]
=

T∑
t=0

∇θ log πθ(at |st)

I Which yields:

∇θJ(θ) = Eτ∼pθ(τ)

[
r(τ)

T∑
t=0

∇θ log πθ(at |st)

]
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REINFORCE algorithm

I Basic form:

1. Sample τ ∼ pθ(τ) and observe reward r(τ)

2. θ ← θ + α
[
r(τ)

∑T
t=0∇θ log πθ(at |st)

]
I Can be augmented by minibatches and stuff
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Comparison with MLE

I Imagine a supervised scenario in which best actions were provided as labels

∇θJPG (θ) ≈ r(τ)
T∑
t=0

∇θ log πθ(at |st) ∇θJMLE (θ) ≈
T∑
t=0

∇θ log πθ(a?t |st)

I In supervised regime we would fit the policy directly to the best actions by
exploiting gradients for those actions

I In RL scenario we are weighting gradients for sampled actions by reward those
actions yielded

I This is a weaker supervision and the variance of stochastic approximation is big,
so expect slow convergence

I However, the reward can be an arbitrary function which allows optimization of
wider range of functions!
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Expected Grad-Log-Prob Lemma

Eτ∼pθ(τ) [∇θ log pθ(τ)] =

∫
pθ(τ)∇θ log pθ(τ)dτ

=

∫
pθ(τ)

∇θpθ(τ)

pθ(τ)
dτ

=

∫
∇θpθ(τ)dτ

= ∇θ
∫

pθ(τ)dτ

= ∇θ1

= 0
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Variance Reduction Through Baselines

I It holds:

Eτ∼pθ(τ) [(r(τ)− b)∇θ log pθ(τ)] = ∇θJ(θ)− Eτ∼pθ(τ) [b∇θ log pθ(τ)]

= ∇θJ(θ)− bEτ∼pθ(τ) [∇θ log pθ(τ)]

= ∇θJ(θ)

I Subtracting any constant from the reward changes nothing. So, why do it?

I It can reduce the variance of the stochastic approximation if properly chosen!

I Variance minimization with respect to baseline can be either analytical or
numerical

I This conclusion can be easily generalized to nonconstant baselines as long as they
do not depend on actions
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Alternative Gradient Estimate
I It holds:

∇θJ(θ) = ∇θEτ∼pθ(τ)[r(τ)]

= ∇θVθ(s0)

= ∇θ
∑
τ

πθ(τ |s0)R(τ)

=
∑
τ

∇θπθ(τ |s0)R(τ)

I Consider the derivative of the policy

∇θπθ(τ |s0) = ∇θ
T∏
t=0

πθ(at |st)

=
T∑
t=0

πθ(τ0:t−1|s0)∇θπθ(at |st)πθ(τt+1:T |st + 1)
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Alternative Gradient Estimate
I By substituting and changing the order of summation:

∇θJ(θ) =
T∑
t=0

∑
τ0:t−1

πθ(τ0:t−1|s0)
∑
at

∇θπθ(at |st)
∑
τt+1:T

πθ(τt+1:T |st+1)R(τ)

=
T∑
t=0

∑
τ0:t−1

πθ(τ0:t−1|s0)
∑
at

πθ(at |st)
∇θπθ(at |st)
πθ(at |st)

∑
τt+1:T

πθ(τt+1:T |st+1)R(τ)

=
T∑
t=0

∑
τ0:t−1

πθ(τ0:t−1|s0)
∑
at

πθ(at |st)∇θ log πθ(at |st)
∑
τt+1:T

πθ(τt+1:T |st+1)R(τ)

=
T∑
t=0

Eτ0:t−1 [Eat [(∇θ log πθ(at |st))Eτt+1:T
[R(τ)]]]

=
T∑
t=0

Eτ0:t−1 [Eat [(∇θ log πθ(at |st))Eτt+1:T
[R(τ0:t−1) + R(τt:T )]]]
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Alternative Gradient Estimate

I Since R(τ0:t−1) is independent of at and τt+1:T it holds:

Eat [(∇θ log πθ(at |st))Eτt+1:T
[R(τ0:t−1)]] = R(τ0:t−1)Eat [∇θ log πθ(at |st)]

= 0

I where the last equation is due to the expected grad-log-prob lemma
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Alternative Gradient Estimate
I Also consider:

Eτt+1:T
[R(τt:T )] = rt + Eτt+1:T

[R(τt+1:T )] = Qθ(st , at)

I Therefore

∇θJ(θ) =
T∑
t=0

Eτ0:t−1 [Eat [(∇θ log πθ(at |st))Eτt+1:T
[R(τ0:t−1) + R(τt:T )]]]

=
T∑
t=0

Eτ0:t−1 [Eat [(∇θ log πθ(at |st))Q(st , at)]]

= Eτ

[
T∑
t=0

Eat [(∇θ log πθ(at |st))Q(st , at)]

]

= Eτ

[
T∑
t=0

∑
at

∇θπθ(at |st)Q(st , at)

]
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What’s the difference

I Compare stochastic approximations

T∑
t=0

∇θ log πθ(at |st)
T∑
t=0

r(st , at)︸ ︷︷ ︸
PG

T∑
t=0

Eat [(∇θ log πθ(at |st))Q(st , at)]︸ ︷︷ ︸
alternative PG

I Second estimate weights gradients only by future rewards, which is known to
reduce the variance of stochastic estimate (this can be applied to the standard
algorithm, too)

I In the second estimate estimation is taken over at instead of using an action from
a single trajectory, which reduces the variance

I Q includes an expectation instead of reward along a single trajectory, with the
same effect

I Second estimate is more expensive
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Why Use RL?

I Image captioning is a supervised task, so RL is not a natural approach to it

I Still, MLE has its issues and other metrics are non-differentiable

I REINFORCE can be used in such scenarios even for supervised learning if the task
is properly posed as a RL problem
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Image Captioning as a RL Problem

I Agent: caption generator

I Episode: caption generation

I State: caption generated so far

I Action: a word to add to the caption

I Reward: value of the metric at the end of the episode and 0 for other steps
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MIXER

I Vanilla REINFORCE approach does not work – too much exploration is needed
and there is too much variance

I MIXER is an approach which first applied policy gradients to image captioning

I It mixes MLE and REINFORCE objectives

I If T is the length of the sequence, it minimizes MLE loss for first t words and
maximizes BLEU-4 loss for the rest of the sequence

I BLEU-4 part relies on REINFORCE for optimization

I It starts with t = T and decreases it to 0 according to some carefully selected
schedule

I The approach is not robust and needs careful tuning, so it is not easy to use
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Proposed Approach

I Policy: πθ(wt |w1:t−1, x)

I Stochastic approximation of the gradient:

∇θJ(θ) ≈
T∑
t=1

∑
wt

∇θπθ(wt |w1:t−1)Q(w1:t−1,wt)

I Reward: R(w1:T |x, y) given at the end

I Reward is sparse, so Monte Carlo rollouts are used for intermediate rewards:

Qθ(w1:t−1,wt) ≈
1

K

K∑
k=1

R(w0:t−1;wt ;w
k
t+1:T |x, y)
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Variance Reduction

I Variance reduction:

∇θJ(θ) ≈
T∑
t=1

∑
wt

∇θπθ(wt |w1:t−1)(Q(w1:t−1,wt)− Bφ(w1:t−1))

I Baseline is a neural network trained to minimize the loss

L(φ) =
∑
t

EstEwt (Q(st ,wt)− Bφ(st))2

where for st the hidden state of the generator is used, but gradients from L are
not propagated to the generator
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Rewards

I BCMR:

5.0BLEU−1+0.5BLEU−2+1.0BLEU−3+1.0BLEU−4+1.0CIDEr+5.0METEOR+2.0ROUGE

I SPICE

I Combination of SPICE and CIDEr
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Training

I Actions are words, which makes a huge action space

I First the generator is trained using MLE to help warm start

I Then it is trained by policy gradients
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Architecture

I 512-dimensional word embeddings

I Inception-V3 CNN encoder pretrained on ImageNet

I RNN decoder is one-layer LSTM with 512 units

I In test time RNN decoder gets its previous output as its input
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Experimental Setup

I COCO dataset

I 120, 553 training and 1, 665 validation images

I At least 5 captions per image

I Vocabulary size of 8, 855 words
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Experimental Results
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Human Evaluation

I Evaluation at crowdsourcing platform

I 87% ground truth captions evaluated as not bad
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Conclusions

I We can perform gradient based optimization of non-differentiable losses via policy
gradient algorithms

I We repay that in convergence rate and stability of optimization process, which
decrease

I There is a variety of tricks to improve performance, but it is not easy
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