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Image Captioning Problem

» For an image provide a caption describing it

Vision

©)

Language

Deep CNN Generating

RNN

—>

o

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.
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COCO dataset

» Large-scale object detection, segmentation, and captioning dataset.
> > 200K labeled images

» 5 captions per image
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Maximal Likelihood Formulation

» Assume a probability distribution p(y|x, #) parametrized by learnable parameters 6

» Likelihood:
N

IO

i=1
> Negative log likelihood loss:

N
L(6) =—> logp(y'|x',0)
i=1

N N
==>" logp(yjlyi;_1.¥'.0)

i=1 j=1
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Maximal Likelihood Formulation Issue

» In training, since the labels are known log p(yj]yl":jfl,x",é?) can be computed if
p(:]-,0) is defined
» While doing prediction, true labels are unavailable and model predictions are fed

instead
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Show and Tell Architecture
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Maximal Likelihood Formulation Issue

This leads to accumulation of errors

v

v

There are methods to mitigate this problem, but with their own problems

v

Also, MLE criterion need not correlate with human judgement too well

v

Alternative path - optimize different metrics
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Image Captioning Metrics

» BLEU
METEOR
ROUGE
CIDEr
SPICE

v

v

v

v
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BLEU

Assumes output sentence of length NV and 1 or more reference sentences are
provided.

A word of the output sentence has a maximal number m of occurrences among all
reference sentences and occurence count of n in the output sentence

Its score is min(n, m)/N

Such scores are averaged over all sentences and all words in them to obtain BLEU
score

The score is between 0 and 1

BLEU-N is a generalization to word N-grams
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METEOR

» Performs alignment of output sentence with one of the reference sentences by
matching words so that any word is matched to at most one word from another
sentence

» Largest alignment is selected and if there are several, then the one with least
matching crosses

» Precision and recall for the alignment are computed and F mean is computed as
10PR/(R +9P)

> Penalty is computed as 0.5 times cubed number of chunks consisting of adjacent
matched words divided by the number of matched words

> Score is computed as F - (1 — Penalty)

» The best score for all reference sentences is reported
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ROUGE-N

» Compute precision and recall of N-grams in output sentence and in reference
sentence and then compute F measure

» Larger N puts more emphasis on word order

13 /44



CIDEr

Compute TF-IDF weights for each N-gram appearing in all sentences related to all
images.

Represent each sentence by a vector of TF-IDF values of its N-grams

CIDEr, for a candidate sentence and a set of reference sentences is an average of
cosines between candidate sentence representation and representations of
reference sentences

CIDEr is an average of CIDEr, forn=1,...,4
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SPICE

» Correlation of all previous metrics to human judgement has been disputed

v

Sentences are parsed and their parse trees are converted to scene graphs

v

Graphs for output and reference sentences are compared

v

Details are out of scope

v

Drastically higher correlation with human judgement than previous metrics

v

Great, but how to optimize such metrics??
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The Goal

>

Policy my(als) is a parametrized distribution (can be a neural network) over
actions, given a state

Environment state transition probability is p(s¢+1|st, at)
Probability of a trajectory 7 under policy my:
-
po(T) = po(s0, a0, - .., s7,a7) = p(s0) [ [ mo(aels)p(serlst, ar)
t=0
Reward for trajectory 7:
-
r(r) = Z r(st, ar)
i=0
The expected reward:

J(0) = Ernpyn)[r(7)]

The goal is to maximize the expected reward with respect to 0
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Gradient of The Expected Reward

» Gradient can’t pass through expectation, but:
VHJ(G) = VGETNpg(T)[r(T)]
ZVQ/I’(T)pg(T)dT
- / /(r)Vops(r)dr
Vopo(7)
= [ r(r T)dT
[T

r(7)[Ve log po(7)]pe(T)dT

= Erpy(n)[r(7) Vg log py(7)]
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Gradient of The Expected Reward

» Consider Vy log py(7):

T T
Vo [logp(so) + Y _(logmo(at|st) + log p(styalse, ac) ] = Vglogmy(ar|s:)
t=0 t=0

» Which yields:

T
VHJ(G) = ETNPQ(T) [r(T) Z Vg log 7r6‘(at|st)]
t=0
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REINFORCE algorithm

» Basic form:
1. Sample 7 ~ py(7) and observe reward r(7)
2. 00+« [r(T) Z;O Vo log mo(at|st)

» Can be augmented by minibatches and stuff
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Comparison with MLE

> Imagine a supervised scenario in which best actions were provided as labels

T T
Vodpc(0) ~ r(1) Y Vglogmo(atlst) VoJure(0) ~ > Vglogmo(at|st)
t=0 t=0

> In supervised regime we would fit the policy directly to the best actions by
exploiting gradients for those actions

» In RL scenario we are weighting gradients for sampled actions by reward those
actions yielded

» This is a weaker supervision and the variance of stochastic approximation is big,
so expect slow convergence

» However, the reward can be an arbitrary function which allows optimization of
wider range of functions!
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Expected Grad-Log-Prob Lemma

E;ps(r) [Vologpo(T)] = [ po(T)Volog py(T)dT

/
—/Pe(T)VZ;(i()T)dT
/VGPH(T)O’T

= Ve/Pa(T)dT
— V1
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Variance Reduction Through Baselines

> It holds:

Erpo(r) [(r(1) — b)Vg log po(7)] = Vo J(0) — Erpy(r) [6V log po(T)]
= VJ(8) — BE,p,(r) [Vo log po(7)]
— V,J(0)

v

Subtracting any constant from the reward changes nothing. So, why do it?

v

It can reduce the variance of the stochastic approximation if properly chosen!

» Variance minimization with respect to baseline can be either analytical or
numerical

v

This conclusion can be easily generalized to nonconstant baselines as long as they
do not depend on actions
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Alternative Gradient Estimate
» |t holds:

Ve./(e) = VHETNPB(T)[r(T)]
=Vy VQ(SO)

=V Y _m(7|50)R(T)
= Vomo(r|s0)R(7)

» Consider the derivative of the poIicy

VQﬂ'g(T|SO V@Hﬂ'g at|st

0(70:t—1]50) Vomo(at|se)mo(Tes1:7|5e + 1)

|M~4
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Alternative Gradient Estimate

» By substituting and changing the order of summation:

Vo J(0 Z > wo(o0:e-1/50) Zveﬂe atlse) > mo(Tepr:Tlse+1)R(7)

t=0 70:t—1 Te41:T
V@ﬂ'@ dat|S
LYY malrorals) X mlads) Vomoladse) 5~ o rlse)R()
t=0 T 7o at’S)
0:t—1 Te41:T
= Z > mo(70:e-150) Zﬂe at|st) Vg log mg(ar|s:) > mo(resr.7|ses1)R(7)
t=0 70:t-1 Ter1:T
-
= ZETO:tfl[]Eat[(ve log ﬂ-@(at|5t))ETt+1:T[R(T)]]]
t=0
T

=D En o [Eal(Volog mo(ac|s) B, 1 [R(70:e-1) + R(me:7)]]]
t=0
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Alternative Gradient Estimate

» Since R(7o:t—1) is independent of a; and 7¢41.7 it holds:

Ea [(Vologmg(at|st))Er, .7 [R(70:0-1)]] = R(70:¢-1)Ea,[Vo log mo(at|st)]
=0

» where the last equation is due to the expected grad-log-prob lemma
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Alternative Gradient Estimate

» Also consider:

ETt+1:T[R(Tt:T)] =r+ ETt+1:T[R(Tf+1ZT)] = Q@(Sta at)

» Therefore

s'

VoJ(0) = D Eni[Eal(Vologmo(acls) Er,,.r [R(70:e-1) + R(re.7)]]]
t=0

Erp. 1 [Ea [(Volog mo(at(st)) Q(st, ar)]]

I
]~

t

I
o

E,

;
Z E,.[(Vo log mo(atlst)) Q(st, at)]]

t=

-
E- !Z Z Vomg(at|s:) Q(st, at)]

t=0 a:

o
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What's the difference

» Compare stochastic approximations

T

T T
ZV@ log mp(at|st) Zr St, at) EEat[(VG log mg(at|st)) Q(St, ar)]
t=0 t=0

t=0

PG alternative PG

» Second estimate weights gradients only by future rewards, which is known to
reduce the variance of stochastic estimate (this can be applied to the standard
algorithm, too)

> In the second estimate estimation is taken over a; instead of using an action from
a single trajectory, which reduces the variance

» @ includes an expectation instead of reward along a single trajectory, with the
same effect

» Second estimate is more expensive
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Why Use RL?

» Image captioning is a supervised task, so RL is not a natural approach to it
» Still, MLE has its issues and other metrics are non-differentiable

» REINFORCE can be used in such scenarios even for supervised learning if the task
is properly posed as a RL problem
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Image Captioning as a RL Problem

v

Agent: caption generator

v

Episode: caption generation

v

State: caption generated so far

v

Action: a word to add to the caption

v

Reward: value of the metric at the end of the episode and 0 for other steps
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MIXER

» Vanilla REINFORCE approach does not work — too much exploration is needed
and there is too much variance

» MIXER is an approach which first applied policy gradients to image captioning
> |t mixes MLE and REINFORCE objectives

» If T is the length of the sequence, it minimizes MLE loss for first t words and
maximizes BLEU-4 loss for the rest of the sequence

» BLEU-4 part relies on REINFORCE for optimization

> It starts with t = T and decreases it to 0 according to some carefully selected
schedule

» The approach is not robust and needs careful tuning, so it is not easy to use
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Proposed Approach

v

Policy: mg(we|wi.¢—1,x)

» Stochastic approximation of the gradient:
T
VOJ(Q Z Z Voo Wt’Wl t— I)Q(Wl:t—1> Wt)
1 Wt

v

Reward: R(wi.T|x,y) given at the end

v

Reward is sparse, so Monte Carlo rollouts are used for intermediate rewards:

K
1
Qo(wit—1, we) = e Z R(wo:t—1; we; Wtk+1:T|xa y)
k=1
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Variance Reduction

» Variance reduction:

VoJ(0) ~ ZZVMQ wewre—1)(Q(Wrie—1, we) — By(wiie—1))

t=1 wt

» Baseline is a neural network trained to minimize the loss

- ZEStEWt(Q(Sh we) — By(st))?

where for s; the hidden state of the generator is used, but gradients from L are
not propagated to the generator
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Rewards

» BCMR:
5.0BLEU—1+4+0.5BLEU—2+1.0BLEU—3+41.0BLEU—4+1.0CIDEr+5.0METEOR+2.0ROUGE

» SPICE
» Combination of SPICE and CIDEr
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Training

» Actions are words, which makes a huge action space
> First the generator is trained using MLE to help warm start

» Then it is trained by policy gradients
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Architecture

900«

p(gu) p(g ) p(gT)

v

512-dimensional word embeddings

v

Inception-V3 CNN encoder pretrained on ImageNet
RNN decoder is one-layer LSTM with 512 units

In test time RNN decoder gets its previous output as its input

v

v
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Experimental Setup

COCO dataset
120,553 training and 1,665 validation images

v

v

v

At least 5 captions per image

v

Vocabulary size of 8,855 words
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Experimental Results

Submissions CIDEr-D  Meteor ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
MSM@MSRA [2§] 0.984 0.256 0.542 0.739 0.575 0.436 0.330
Review Net [27] 0.965 0.256 0.533 0.720 0.550 0.414 0.313
ATT [29] 0.943 0.250 0.535 0.731 0.565 0.424 0.316
Google [27] 0.943 0.254 0.530 0.713 0.542 0.407 0.309
Berkeley LRCN [7] 0.921 0.247 0.528 0.718 0.548 0.409 0.306
MLE 0.947 0.251 0.531 0.724 0.552 0.405 0.294
PG-BLEU-4 0.966 0.249 0.550 0.737 0.587 0.455 0.346
PG-CIDEr 0.995 0.249 0.548 0.737 0.581 0.442 0.333
MIXER-BCMR 0.924 0.245 0.532 0.729 0.559 0.415 0.306
MIXER-BCMR-A 0.991 0.258 0.545 0.747 0.579 0.431 0.317
PG-BCMR 1.013 0.257 0.55 0.754 0.591 0.445 0.332

PG-SPIDEr 1.000 0.251 0.544 0.743 0.578 0.433 0.322
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Human Evaluation

» Evaluation at crowdsourcing platform

» 87% ground truth captions evaluated as not bad

PG-SPIDEr 48.57% (+10.56%) | |
PG-BCMR 44.72% (+6.71%)
MLE 38.01% (+0.00%)

i i i
0% 10% 20% 30% 40% 50%
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Conclusions

» We can perform gradient based optimization of non-differentiable losses via policy
gradient algorithms

» We repay that in convergence rate and stability of optimization process, which
decrease

» There is a variety of tricks to improve performance, but it is not easy
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