GCREF for
Classifica-
tion, Fast

Approxima-
tion, and
Applications

GCREF for Classification, Fast Approximation, and
Applications

Andrija Petrovic

University of Belgrade

April 17, 2019



GCREF for

Classifica-

tion, Fast

Approxima-

tion, and Gaussian Conditional Random Fields for regression

Applications

@ Discriminative model

Introduction

- GCRF

Advantages of GCRF:
@ Combination of models and spatio-temporal correlation

e Additional information provided by structure

@ Learning coefficients o, 3
not correlation matrix ¥ and expectation u
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Figure

. Graphical representation of dependencies expressed by GCRF
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@ The generalized form of the GCRF is:

Andrija
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P(y|x,a,ﬁ):mexp (ZIIV:]. A(a,yf,x,')+2,-¢j l(ﬁv%d’j)) (1)

Introduction

- GCRF

e Two different feature functions are used: association
potential A(«, yi, x) to model relations between outputs y;
and corresponding input vector x; and interaction potential
(8, yi, y;) to model pairwise relations between nodes.
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@ The interaction potential functions are defined as:

Introduction

- GCRF
1(Byiny)) == i1 X BiShyi—yi)?
The canonical form of GCRF is:

P(y\xya,ﬂ)=ﬁexp(f%(yfu)TZ‘l(y*u)) (4)



GCRFCB

e One way of adapting GCRF to classification problem is by
tion, Fast

Approxima. approximating discrete outputs by suitably defining continuous

Nl outputs. Namely, GCRF can provide dependence structure over
A continuous variables which can be passed through sigmoid
Petrovic function.

@ The model is applicable to classification problems with
GCRFCB undirected graphs, intractable for standard classification
CRFs.

@ Defining correlations directly between discrete outputs may
introduce unnecessary noise to the model.

@ In case that unstructured predictors are unreliable, which is
signaled by their large variance (diagonal elements in the
covariance matrix), it is simple to marginalize over latent
variable space and obtain better results.



Representation

GCREF for

Classifica-

tion, Fast

Approxima-
tion, and
Applications

Figure: Graphical representation of GCRFCB
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P(yilzi)=Ber(yilo(z)))=0(z)" (1-o(z))* i (5)
@ The joint distribution of outputs y; can be expressed as:
P(y1,y2,-ynl2) =TTy o(2)Yi (1= (z;)) i (6)

@ The conditional distribution P(z|x) is the same as in the
classical GCRF model and has canonical form defined by
multivariate Gaussian distribution.
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_1N Vi(1— Nl-yi 1
Petrovic P(y,Z‘X,O)—HI-:]_O'(Z,)y (1 U(ZI)) Y (27T)N/2|Z(x,9)|1/2 (7

exp(—3(z—p(x,0)) TE(x,0) " (z—n(x,0)))
Where 0=(a1,...,00k,51,---,8L)-
Two ways of inference and learning were considered in GCRFBC

model:

© GCRFBCb - with conditional probability distribution
P(y|x,8), in which variables z are marginalized over, and
@ GCRFBCnb - with conditional probability distribution
P (y|x, O,Nz), in which variables z are substituted by their
expectations.
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P(yi=1|x,0)=[, o(z)P(z|x,0)dz (9)
@ As a result of independence properties of the distribution,
Inference it holds P(y; = 1|z) = P(y; = 1|z;), and it is possible to
marginalize P(z|x, @) with respect to latent variables
zZ = (21, ey Zi—15Zj415 - - - ,ZN):
P(yi=1|x.0)=,. o(z)( [, P(z zlx,0)dz")dz; (10)
o It holds:

P(yi=1]x,0)=["2° o(z))N (zi|pi,02)dz; (11)
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@ To predict y, it is necessary to evaluate posterior maximum
il of latent variable zy.x = argmaxP(z|x, ), which is
z

straightforward due to normal form of GCRF. Therefore, it
holds zyax = pt,i. The conditional distribution
P(yi = 1|x, pt2,;i,0) can be expressed as:

Inference

Pyi=11x.2,0)=0 (112,1) = Trost=r (12)

where 11, ; is expectation of latent variable z;.
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o Evaluation of the conditional log likelihood is intractable,
since latent variables cannot be analytically marginalized.
Andrija The conditional log likelihood is expressed as:

Petrovic

£(Y|X,0)=log( [, P(Y,Z\X,@)dz):zj"i1 log (fzj P(”,zj\xj,e)dzj)
:Zj"il Lj(yjlx;,0)

(13)

£5(yj1;,0)=log [, TTiLy o(z) " (1=0 ;)" 7

ool b)) (14)
N2 (< |12 Zj
(@mN/2 (5]
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Sl o(x)20(€) exp{(x—€) /2= A(€) (x*~€2)} (15)
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@ One way to approximate integral in conditional log
likelihood is by local variational approximation. Lower
bound for sigmoid function, can be expressed as:

where A(¢)=—2-[¢(€)-3] and { is a variational parameter.

Learning

Figure: The sigmoid function with its lower bound
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@ This approximation can be applied to the model, such that:

P(y;.2j1%,0)=P(y;|2}) P(2j|%;,0)>P(y; 2| x,0.&;) (16)

Zji+Eji
P(y;:2j1,0:£) =TTy o(§i) exp (Zjiyji— 5t —A(éﬁ)(zjz,-—&ﬁ))

. (17)
e GEC R AT

@ The lower bound of conditional log likelihood
L(yj|xj, 0, &) is defined as:
£;(yjlx},0.€;)=log P(y;|x},0.&))= > (Ioga(f_,—,—)—%+>\(§ﬁ)§j2l_)_

-1 1
3] i gml ST m+ g log ||

’ (18)
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ot the mode of posterior distribution of continuous latent
Petrovic variable z is evaluated directly, so there is no need for

approximation technique. The conditional log likelihood
can be expressed as:

Learning
£(Y|X,0,u)=log P(Y|X,0,u)
=311 S log P(yilxj0,m1) (19)

Y N
:ijl it Lji (vl 1,6, 50)

Lji(yjilx;,0,1i1)=y;i log o (i) +(1—y;i) log(1—o(141)) (20)
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@ However, in the case of GCRFBCb, memory complexity
during training is O(M) due to dependency of variational
parameters on the number of instances. Computational
complexity is also higher — O( TMN3), which can also be

Fast reduced to O( TMN?) in case of sparse precision matrix.

approximation

@ Decreasing costs by decreasing number of variational
parameters
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OL;(yjlx;,0:€5)
= (25,35) {2(yj L )sjaéfs]sj m;

(21)

Fast

approximation

@ One way to solve this it to cluster &j; and use group
representative as approximation to all variational
parameters in group
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@ In each iteration of optimization for each instance and
node expectation of P(zj|x;,0) is evaluated for current
value of 6

@ The obtained pi or o(p;) are clustered

o @ Group representative is used for gradient evaluation

approximation
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Applications 1[GCRFCNE - - 0793 6574
2|GCRFCB - - 0.797 146.527
. 3|GCRFCB_fast [K-means 5/0.793 81.332
Andrijz
. A|GCRFCB_fast _|K-means 50[0.793 76.412
Petrovic 5|GCRFCB_fast_|K-means 150[0.794 126.419
6|GCRFCB_fast _[K-means 250[0.794 182.050
7|GCRFCB_fast |MiniBatch K-means 5/0.793 86.667
8|GCRFCB_fast _|MiniBatch K-means 50/0.794 87.942
9|GCRFCB_fast _|MiniBatch K-means 150(0.794 130.509
10|GCRFCB_fast [MiniBatch K-means 250(0.793 139.425
11]GCRFCB_fast _|Gaussian Mix 5[0.794 86,542
12| GCRFCB_fast _|Gaussian Mix 50[0.793 90.905
13|GCRFCB_fast |Gaussian Mix 150(0.794 122.325
14|GCRFCB_fast |Gaussian Mix 250/0.794 125.200
15|GCRFCB_fast_|Gaussian Mix prob 5[0.793 87.269
16]GCRFCB fast_|Gaussian Mix prob 50[0.793 157.059
17|GCRFCB_fast [Gaussian Mix prob 150(0.793 358.438
18|GCRFCB_fast |Gaussian Mix prob 250(0.794 891.755
19|Log_regre_L2 - = 0.581 &
Results 20[Log_regre_L1 = ~ [oss1 -
21]NN - — Josro
22|RF - - 0.608

Figure: Gene functional classification
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. No.|  Model Cluster Cluster No. | AUC 5
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Applications 1| GCRFCNB - - 0.943 5.283
2 | GCRFCB , B 0.928] 82995
3 | GCRFCB fast K-means 5 |o0892] 60.832
4 | GCRFCB_fast K-means 50 |0.893]  83.825
5 | GCRFCB_fast K-means 500 |0.872] 145776
6 | GCRFCB fast K-means 1200 [0.767] 273152
7 | GCRFCB_fast | MiniBatch K-means 5 |0894] 65204
8 | GCRFCB_fast | MiniBatch K-means 50 [0.891] 75232
9 | GCRFCB_fast| MiniBatch K-means | 500 [0.801]  135.654
10 | GCRFCB_fast | MiniBatch k-means | 1200 _|0.761] _ 259.348
11| GCRFCB fast| _ Gaussian Mix 5 |08%0|  69.725
12 | GCRFCB fast| _ Gaussian Mix 50 [0.892] 93.38
13 | GCRFCB_fast| _ Gaussian Mix 500 [0.910]  369.583
14 | GCRFCB fast| _ Gaussian Mix 1200 |0.907]  783.624
15 | GCRFCB_fast | Gaussian Mix prob 5 |08%0]  63.357
16 | GCRFCB _fast |_Gaussian Mix prob 50 [0.911] 104404
17 | GCRFCB_fast | Gaussian Mixprob | 500 |0.910] _ 1145.447
Restite 18 | GCRFCB_fast| Gaussian Mixprob | 1200 [0.892]  2552.967
19 [Log_regre_L2 B B 0.898 B
20 [ Log_regre L1 B , 0.917 ,
2 NN - - 0.930 -
2 RF - - 0.934 -

Figure: Semantic scene classification
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Applications Model Cluster Cluster No. | auc | CaIcuIation time
insec
. 1 GCRFCNB - -~ [os20] 36767
Andrij: 2 GCRFCB - - 0834] 851,645
Petrovic 3 GCRFCB_fast K-means 5 0.832] 392249
4 GCRFCB_fast K-means 50 0.831] 675.800
5 GCRFCB_fast K-means 500 0.802] 1395.052
7 GCRFCB_fast MiniBatch K-means 5 0.831] 546.011
8 GCRFCB_fast MiniBatch K-means 50 0.831] 541.520
9 GCRFCB_fast MiniBatch K-means 500 0.827] 734.008
11 GCRFCB_fast Gaussian Mix 5 0.831] 481.539
12 GCRFCB_fast Gaussian Mix 50 0.831 537.168
13 GCRFCB_fast Gaussian Mix 500 0.831] 1283.313
15 GCRFCB_fast Gaussian Mix prob 5 0.830] 553.819
16 GCRFCB_fast Gaussian Mix prob 50 0.831] 783.791
17 | GCRFCB_fast | Gaussian Mix prob 500 |0832] 3124255
19 Log_regre_L2 - - 0.782] -
20 Log_regre_L1 - - 0.797
21 NN - - 0.783 -
Results 2 RF - - Josiz -

Figure: Pediatric readmission
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@ The learning procedure is straightforward. Firstly, all
instances and corresponding nodes are used for learning
parameters of binary classification algorithm (GCRFBCb or
GCRFBCnb). Subsequently, for each instance only nodes
with non-null values of outputs are used in maximization of
GCRF log likelihood with respect to the parameters o and

GCRF-
GCRGBC B.

o It is important to emphasize that structure of GCRF during
learning and inference is changing with respect to the
nodes with non-null values of variables.
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e Figure: Graphical representation of classification-regression
CoRCEE methodology expressed by GCRFBC and GCRF models
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Results

Results
Highway TSE

Figure: Map of highways in Serbia - red marked toll stations were
used as nodes in GCRFBC model
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Table: Prediction performance and total computation time of GCRF
and unstructured predictors for average moving velocity when null
and non null values are not classified

Nis - Belgrade Belgrade - Adasevci
No. | Model R? Computation time in minutes R? Computation time in minutes
1 | GCRF | 0.509 227.134 0.947 19.272
2 Ridge | 0.449 5.148 0.928 0.391
3 | Lasso | 0.452 3.204 0.928 0.328
4 NN | -0.060 25.179 0.891 8.310
5 RF 0.507 184.720 0.946 7.378

Results
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And and regression of average moving velocity
Petrovic
Classification of null values
Nis - Belgrade Belgrade - Adagevci
No. Model AUC/R? | Computation time in minutes | AUC/R? | Computation time in minutes
1 | GCRFBCnb | 0.893 262.799 0.648 49.518
2 GCRFBCb 0.878 465.683 0.999 89.949
4 Ridge 0.853 0.216 0.995 0.015
5 Lasso 0.854 1.842 0.995 0.218
6 NN 0.832 249.933 0.997 47.181
7 RF 0.858 4.437 0.998 0.581
Regression of average moving velocity
1 GCRF 0.859 175.458 0.983 14.136
2 Ridge 0.826 3.891 0.970 0.295
Results
3 Lasso 0.828 2.421 0.971 0.247
4 NN 0.796 19.031 0.961 6.271
5 RF 0.834 139.622 0.980 5.568
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Applications @ Structured classification and regression algorithms have
Andrija better prediction performance compared to the
Feene unstructured predictors, meaning that the variable

dependence structure can be exploited for better prediction
e Both GCRFBCb and GCRFBCnb models have better

prediction performance compared to the unstructured
predictors

@ Due to high memory and computational complexity of
GCRFBCb compared to GCRFBCnb, it is reasonable to use
GCRFBCnb or fast GCRFBCb.

Conclusion
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