Beyond regular grids

Generalization of Convolutional
Architecture to Non-Euclidean Domains



Main source

The work outlined in this presentation was published

e Monti et al. 2016 - Geometric deep learning on graphs and manifolds using
mixture model CNNs (http://arxiv.org/abs/1611.08402)

This work is a generalization of multiple previous attempts at implementing spatial
convolution on surfaces representing boundaries of 3D volumes.


http://arxiv.org/abs/1611.08402

Remember Convolutions?
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Well defined on regular grids (euclidean spaces)
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To do a convolution g of weight
matrix h (size wxw) over f at

coordinates m,n

o A patch of size wxw centered at
coordinates m,n is extracted from f

o Each cell (eg. pixel) from the extracted
patch is multiplied with its
corresponding weight from h

o Output of the convolution is a sum of
the these multiplications

To keep the shape of o equal to
the shape of fwe need padding of
w/2, and a stride of 1




Well defined on regular grids (euclidean spaces)

Things are very similar
in 3D, however with
very significant
implementation
drawbacks which we
will discuss later in the
presentation




But what about non-euclidean spaces

e What if we wanted to do pattern
recognition over graphs (eg. social

or gene regulatory networks)

o Neighbourhood/distance is not uniquely
defined (could be number of hops, sum
of edge weights or any other function)

o Vertices have very different
neighbourhoods, thus making it
impossible to apply convolution as
previously defined (as it’s impossible to
define a weight matrix upfront)




But what about non-euclidean spaces

e What if we wanted to detect patterns
in signals defined over surfaces
(2-manifolds)

e Note that in most cases surfaces are
implemented as triangular meshes
(sets of triangles connected on shared
edges)

e Triangular meshes can also be viewed
as graphs where each vertex has x,y,z
coordinates, and a list of neighboring
vertices

Manifolds
D



Riemannian manifolds

e X - d-dimensional differentiable manifold, possibly with boundary o.X

e T,.X -tangent space, d-dimensional Euclidean space to which the manifold is
around point x € X' to which the manifold is homeomorphic

e Riemannian metric - An inner product (-, )r,x @ T,X x Tp,X — R T, X
depending smoothly on x

e f{:X — R-smooth real functions (scalar fields) on the
manifold

® Y & N(:B) - point/vertex in the neighbourhood of

XL




Geodesic CNN (GCNN)

Patch Operator:

(D(@)f)(p,6) = /X e, e )

Weighing function:

U, (T, y)vy (T, Y)
w y 7 =
P,H( y) fX Uy (.CI?, ’y)?}g (337 fy)df)/ Polar coordinates p, 0

*Masci et al. 2015 - Geodesic convolutional neural networks on Riemannian manifolds
e



Geodesic CNN (GCNN)

V- Gaussian of the geodesic distance from x,
centered around p:
2

fUp (x) y) X 6_(dX (x7y)_p)2/o-p

v, - Gaussian of the point-to-set distance to the
geodesic I'(z,0):

=
LA

_d2 (F(x,e),y)/0'2 - _ Up(m,y)vg(x,y) L N (X
ve(x7 y) Cx 6 X o 0,9( ,y) B fX vp(x,y)vg(:v,y)dy — {l"‘g'%%%%)
“él'a%




Geodesic CNN (GCNN)

Geodesic Convolution:

Pl — me / Ypma},9+A9)(D(x) £)(p,6)dpds

AOE[O 2m)

For all possible p, 8 extract a patch of fat point 2, multiply by a weight
from g for this distance and angle, and max-pool across all rotations to
account for the fact that the angle origin could be arbitrary Polar coordinates p, 6




Anisotropic CNN (ACNN)

Anisotropic diffusion equation:

Ao(x) = Ro(x)

/

Rotation by 0
in tangent
space TxX

Isotropic Diffusion Anisotropic Diffusion

1s

Extrinsic Intrinsic
methods methods

*Boscaini et al. 2016 - Learning shape correspondence with anisotropic convolutional neural networks




Generalized framework

e u(z,y) - pseudo coordinates, d-dimensional vector assigned to each ¥
e wo(u) = (wi(u),...,ws(u)) - kernel parametrized by learnable params @
e /- dimensionality of the extracted patch 2

D)= Y wnp(alE )i, §=1.

*Monti et al. 2016 - Geometric deep learning on graphs and manifolds using mixture model CNNs



GCNN Implementation

(D(flf)f)(ﬂae):/ w,o(x,y) f(y)dy D)= Y wi{al@i i@ §=01.-x J

X

u(z,y) = p(z,y),0(z,y)

wi(u) = exp(—5(u )" (7 ) - a)

LGN
& »JQ‘\

— _ 2 2
’l)p(CU, y) X e (dx($,y) p) /ap <
AL

AN

Vg flf,y)




Principal curvatures

6 = 0 in the direction of maximum curvature

2T pmax
(fxg)(z) o / / 9(p,0+A8)(D(x) f)(p, 0)dpdd (P Zgﬂ e




Other generalized implementations

Table 1. Several CNN-type geometric deep learning methods on graphs and manifolds can be obtained as a particular setting of the
proposed framework with an appropriate choice of the pseudo-coordinates and weight functions in the definition of the patch operator. x
denotes the reference point (center of the patch) and y a point within the patch. x denotes the Euclidean coordinates on a regular grid.

a,5,,69and ;,0;,5=1,...,. J denote fixed parameters of the weight functions.
Method Pseudo-coordinates u(z,y) Weight function w;(u),j =1,...,J
CNN [28] Local Euclidean x(#y) =x(y) —x{z) on—u;)
GCNN [32] Local polar geodesic p(z,y),0(z,y) exp(—i(u—1u;)" (6‘2’ 2 >—1 (u—1a;))
ACNN [7]  Local polar geodesic p(z,y),0(z,y) exp(—zu'Rg, (* 1)jou)
GCN [26]  Vertex degree deg(x), deg(y) (1 —]1- Ll |> (1 —[1- \/1u_2|)

)
DCNN [2]  Transition probability in r hops  p%(z,y),...,p" 1(z,y) id(u;)




MoNet - Learnable patch operator

u(z,y) = p(z,y),0(z, y)
() = exp(—3(u—p;) B7 (u—p;))
W is now a Gaussian Mixture Model of .J gaussians with trainable ¢ and >

Entire model can be jointly trained by backpropagation, ie. both the
convolution kernel and the patch operator



MoNet - Learnable patch operator

%/8 /%/8 /%/8

Polar coordinates p, 6 ' GCNN ' ACNN ’ MoNet
Figure 1. Left: intrinsic local polar coordinates p, @ on manifold around a point marked in white. Right: patch operator weighting functions
w;(p, @) used in different generalizations of convolution on the manifold (hand-crafted in GCNN and ACNN and learned in MoNet). All
kernels are L..-normalized; red curves represent the 0.5 level set.




MNIST Superpixel graph

o superpixels - adjacent pixels with similar values
o (super)pixel graphs - each pixel a vertex and all
adjacent pixels are connected with edges

o  MNIST 28x28 =784 pixels
o 300,150 and 75 superpixels

e MoNet

= (p, 9) with respect to superpixel barycenter
25 gaussian kernels

A S N
Ami'ﬂn'm%m!* 1

3 convolutional layers interleaved with pooling*
dropout = 0.5
batch size =10

o O O O O

Regular grid Superpixels
Figure 2. Representation of images as graphs. Left: regular grid
(the graph is fixed for all images). Right: graph of superpixel
adjacency (different for each image). Vertices are shown as red
circles, edges as red lines.



MNIST Superpixel graph

Table 2. Classification accuracy of classical Euclidean CNN
(LeNet5), spectral CNN (ChebNet) and the proposed approach
(MoNet) on different versions of the MNIST dataset. The setting
of all the input images sharing the same graph is marked with *.

Dataset LeNet5 [28] ChebNet [15] MoNet
*Full grid 99.33% 99.14% 99.19%
L orid 98.59% 97.70% 98.16%
300 Superpixels - 88.05% 97.30 %
150 Superpixels - 80.94% 96.75 %

75 Superpixels - 75.62% 91.11%




Shape correspondence problem

e FAUST dataset

o 100 high resolution watertight meshes
10 different people

10 poses each

Exact ground-truth correspondence
Each shape has 6890 vertices
vertex-wise 544-dimensional SHOT
descriptors (local histogram of normal
vectors)

c O O O O




Shape correspondence problem

For each point on a given shape,

e Presented as a labeling problem determine the corresponding point on the
o Input - vertex of a query shape X reference shape
o Output - softmax over vertex indices on &
reference shape Y »

o  Standard cross entropy loss

o  First subject in first pose used as ref

o Used 8 subjects (80 shapes) for training,
remaining for test set

e Network
o LIN16+RelLU, MC32+RelLU, MC64+RelLU,
MC128+RelLU, LIN256, LIN6890
o Output refined refined using the intrinsic
Bayesian filter to remove local outliers




Shape correspondence problem

Geodesic error d is the geodesic distance of
predicted correspondence point from the true
correspondence

Geodesic error (cm)
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Figure 4. Shape correspondence quality obtained by different
methods on the FAUST humans dataset. The raw performance
of MoNet is shown in dotted curve.
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Anisotropic Diffusion Descriptors

Figure 6. Pointwise error (geodesic distance from groundtruth) of different correspondence methods on the FAUST humans dataset. For
visualization clarity, the error values are saturated at 7.5% of the geodesic diameter, which corresponds to approximately 15 cm. Hot colors
represent large errors.
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Anisotropic CNN

Figure 6. Pointwise error (geodesic distance from groundtruth) of different correspondence methods on the FAUST humans dataset. For
visualization clarity, the error values are saturated at 7.5% of the geodesic diameter, which corresponds to approximately 15 cm. Hot colors
represent large errors.
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Figure 6. Pointwise error (geodesic distance from groundtruth) of different correspondence methods on the FAUST humans dataset. For
visualization clarity, the error values are saturated at 7.5% of the geodesic diameter, which corresponds to approximately 15 cm. Hot colors
represent large errors.

MoNet




Texture retargeting using correspondences

Y

Figure 7. Examples of correspondence on the FAUST humans dataset obtained by the proposed MoNet method. Shown is the texture
transferred from the leftmost reference shape to different subjects in different poses by means of our correspondence.



Synthetic range maps

e Synthetically generated noisy range
(depth) maps from FAUST meshes

e 10 range maps for each subject and pose

e Resolution 100x180

® z-axis rotations with increments of 63
degrees

e Total of 1000 range maps

e Kept the groundtruth correspondence.
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Figure 8. Pointwise error (geodesic distance from groundtruth) of different methods on FAUST range maps. For visualization clarity, the
error values are saturated at 7.5% of the geodesic diameter, which corresponds to approximately 15 cm. Hot colors represent large errors.
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Figure 9. Visualization of correspondence on FAUST range maps as color code (corresponding points are shown in the same color). Full
reference shape is shown on the left. Bottom row show examples of additional shapes from SCAPE and TOSCA datasets.
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Appendix A

Extra slides



Technical advantages of MoNet

e Euclidean 3D convolution is extremely memory intensive
o Let’'s assume we’re decide on 32x32x32 cube
o 4 bytes * 32”3 voxels * 50 filters * 10 layers * 100 examples = 6.5536 gigabytes
o 1data point every 2m/32 = 6.25cm

e Human body
o "2m max height
o Arm span ™ 1:1 with height
o 2m**2 skin surface area
e MoNet
o 2500 vertices

o sgrt(2m*2/2500) = 2.83cm
o 25007"2*4b*2*100 + 2500*4b*50*10"100 = 5.5 gigabytes
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Appendix B

Spectral approaches



Spectral Approaches

Fourier Convolution Theorem:

Flh*f}= F{h}-Fif}
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Spectral Approaches

Fourier Convolution Theorem:

Fih* f} = F{h}- F{f}
n
L 7.7 m[*h=¢(f'f1) frh=® @ h)  (®"f)
 —E——
h=®Th

Bruna et al. 2013 Henaff et al. 2015 Defferrard et al. 2016

K
g = dJKdiag(iAzk)(Dﬂf g = @diag(Kw)®' f g= z w;T; (A f

=1




Instability of spectral approaches

f f
Same signal defined over corresponding points/vertices on two manifolds/graphs f, and f,



Instability of spectral approaches

»

ddiag(9)PTf Ydiag(OW¥Y " f

Result of the same convolution % over these to f, and £, gives very different results



