
Beyond regular grids

Generalization of Convolutional
Architecture to Non-Euclidean Domains



Main source

The work outlined in this presentation was published 

● Monti et al. 2016 - Geometric deep learning on graphs and manifolds using 
mixture model CNNs (http://arxiv.org/abs/1611.08402)

This work is a generalization of multiple previous attempts at implementing spatial 
convolution on surfaces representing boundaries of 3D volumes.

http://arxiv.org/abs/1611.08402


Remember Convolutions?



● To do a convolution g of weight 
matrix h (size wxw) over f at 
coordinates m,n

○ A patch of size wxw centered at 
coordinates m,n is extracted from f

○ Each cell (eg. pixel) from the extracted 
patch is multiplied with its 
corresponding weight from h

○ Output of the convolution is a sum of 
the these multiplications

● To keep the shape of o equal to 
the shape of f we need padding of 
w/2, and a stride of 1

Well defined on regular grids (euclidean spaces)



Well defined on regular grids (euclidean spaces)

● Things are very similar 
in 3D, however with 
very significant 
implementation 
drawbacks which we 
will discuss later in the 
presentation



But what about non-euclidean spaces

● What if we wanted to do pattern 
recognition over graphs (eg. social 
or gene regulatory networks)

○ Neighbourhood/distance is not uniquely 
defined (could be number of hops, sum 
of edge weights or any other function)

○ Vertices have very different 
neighbourhoods, thus making it 
impossible to apply convolution as 
previously defined (as it’s impossible to 
define a weight matrix upfront)

Graphs



● What if we wanted to detect patterns 
in signals defined over surfaces 
(2-manifolds)

● Note that in most cases surfaces are 
implemented as triangular meshes 
(sets of triangles connected on shared 
edges)

● Triangular meshes can also be viewed 
as graphs where each vertex has x,y,z 
coordinates, and a list of neighboring 
vertices

But what about non-euclidean spaces

Manifolds



Riemannian manifolds

●     - d-dimensional differentiable manifold, possibly with boundary ∂X
●         - tangent space, d-dimensional Euclidean space to which the manifold is 

around point        t   to which the manifold is homeomorphic
● Riemannian metric - An inner product

depending smoothly on
●      - smooth real functions (scalar fields) on the

manifold
●                        - point/vertex in the neighbourhood of



Geodesic CNN (GCNN)

Patch Operator:

*Masci et al. 2015 - Geodesic convolutional neural networks on Riemannian manifolds

Weighing function:



Geodesic CNN (GCNN)

ᭇ⍴ - Gaussian of the geodesic distance from ᬕ, 
centered around ⍴:

ᭇᶚ - Gaussian of the point-to-set distance to the 
geodesic           :



Geodesic CNN (GCNN)

Geodesic Convolution:

For all possible        extract a patch of f at point x , multiply by a weight 
from g for this distance and angle, and max-pool across all rotations to 
account for the fact that the angle origin could be arbitrary



Anisotropic CNN (ACNN)

*Boscaini et al. 2016 - Learning shape correspondence with anisotropic convolutional neural networks

Anisotropic diffusion equation:

Extrinsic 
methods

Intrinsic
methods

Rotation by ᶚ 
in tangent 
space TxX



Generalized framework

●               - pseudo coordinates, d-dimensional vector assigned to each
●                                                         - kernel parametrized by learnable params 
●    - dimensionality of the extracted patch

*Monti et al. 2016 - Geometric deep learning on graphs and manifolds using mixture model CNNs



GCNN Implementation



Principal curvatures



Other generalized implementations



MoNet - Learnable patch operator

is now a Gaussian Mixture Model of J gaussians with trainable     and

Entire model can be jointly trained by backpropagation, ie. both the 
convolution kernel and the patch operator



MoNet - Learnable patch operator



MNIST Superpixel graph

● Data
○ superpixels - adjacent pixels with similar values
○ (super)pixel graphs - each pixel a vertex and all 

adjacent pixels are connected with edges
○ MNIST 28x28 = 784 pixels
○ 300, 150 and 75 superpixels

● MoNet
○                    with respect to superpixel barycenter
○ 25 gaussian kernels
○ 3 convolutional layers interleaved with pooling*
○ dropout = 0.5
○ batch size = 10



MNIST Superpixel graph



Shape correspondence problem

● FAUST dataset
○ 100 high resolution watertight meshes
○ 10 different people
○ 10 poses each
○ Exact ground-truth correspondence
○ Each shape has 6890 vertices
○ vertex-wise 544-dimensional SHOT 

descriptors (local histogram of normal 
vectors)



Shape correspondence problem

● Presented as a labeling problem
○ Input - vertex of a query shape X
○ Output - softmax over vertex indices on 

reference shape Y
○ Standard cross entropy loss
○ First subject in first pose used as ref
○ Used 8 subjects (80 shapes) for training, 

remaining for test set

● Network
○ LIN16+ReLU, MC32+ReLU, MC64+ReLU, 

MC128+ReLU, LIN256, LIN6890
○ Output refined refined using the intrinsic 

Bayesian filter to remove local outliers

For each point on a given shape, 
determine the corresponding point on the 

reference shape



Shape correspondence problem

Geodesic error d is the geodesic distance of 
predicted correspondence point from the true 

correspondence









Texture retargeting using correspondences



● Synthetically generated noisy range 
(depth) maps from FAUST meshes

● 10 range maps for each subject and pose 
● Resolution 100x180
● z-axis rotations with increments of 63 

degrees
● Total of 1000 range maps
● Kept the groundtruth correspondence.

Synthetic range maps









Q&A



Appendix A

Extra slides



Technical advantages of MoNet

● Euclidean 3D convolution is extremely memory intensive
○ Let’s assume we’re decide on 32x32x32 cube
○ 4 bytes * 32^3 voxels * 50 filters * 10 layers * 100 examples = 6.5536 gigabytes
○ 1 data point every 2m/32 = 6.25cm

● Human body
○ ~2m max height
○ Arm span ~ 1:1 with height
○ 2m**2 skin surface area

● MoNet
○ 2500 vertices
○ sqrt(2m**2 / 2500) = 2.83cm
○ 2500^2*4b*2*100 + 2500*4b*50*10*100 = 5.5 gigabytes



To create a molecule 
similarity measurement 

tailored to a specific problem 
based on local 3D shape and 

surface charge patterns

Why do we need this at Totient



Appendix B

Spectral approaches



Spectral Approaches



Spectral Approaches



Instability of spectral approaches

Same signal defined over corresponding points/vertices on two manifolds/graphs f1 and f2



Instability of spectral approaches

Result of the same convolution h over these to f1 and f2 gives very different results


