
Predicting molecular properties
with Graph Transformer Network



 About the competition that started it all

● Title and tagline:
○ Predicting Molecular Properties
○ Can you measure the magnetic interactions between a pair of atoms?

● Organized by CHAMPS (CHemistry And Mathematics in Phase Space) 
https://champsproject.com/

● Task:
○ Given atom coordinates in 3d space, predict “Scalar Coupling Constant” (a specific type of 

magnetic interaction) between designated atom pairs
● Notes:

○ It is possible to calculate SCC using QM methods
○ QM methods are very expensive (days or weeks per molecule) and have limited applicability 

in day-to-day workflows
○ Top 5 teams get to write a paper with CHAMPS group

https://champsproject.com/


 About NMR and Scalar Coupling Constant

■ Nuclear magnetic resonance (NMR) spectroscopy is used to identify structure of 
chemical compounds

■ SCC between atoms determines relative positions of peaks on a spectral diagram
■ SCC varies depending on the types of atoms, theirs distances, angle between the 

bonds and other structural properties
■ Task was to predict SCC between pairs of H atoms, H-C and H-N pairs that are either 

directly bonded or 2 and 3 bonds apart



 Input Data

■ Dataset consists of ~85.000 molecules.
■ Up to 30 H, C, O, N, F atoms per molecule (up to 9 “heavy” - non H atoms)
■ Every molecule is represented as a list of atoms described by atom type and x, y, z 

coordinates - no bonds or other info
■ Labels are provided as a list of molecule ID, pair of atom IDs, coupling type (2JHH, 

3JHH, 1JHC, 2JHC, 3JHC, 1JHN, 2JHN, 3JHN) and the scalar coupling constant



 Scoring Function

● Log of the Mean Absolute Error, calculated for each scalar coupling type, 
averaged across types, so that a 1% increase in MAE for one type provides the 
same improvement in score as a 1% increase for another type



 Results

● 2,749 teams
● #4 placement
● All top solutions are DNNs
● Many competition masters 

and grand masters
● Team #1

○ very strong domain expertise 
in both ML and QM

○ Lots of computational 
resources

○ Bosch Corporate Research 
and Bosch Center for AI 
(BCAI), CMU



 Deep Graph Library Overview

● https://www.dgl.ai/
● PyTorch for working with graph NNs
● Supports directed graphs only
● Both nodes and edges have associated vector/tensor properties
● Relies on message passing paradigm

A

https://www.dgl.ai/


 

■ To apply a graph neural networks we need to construct a graph from the points:
◻ Atoms become nodes
◻ For edges we:

■ Inferred bonds using OpenBabel, cleaned-up using custom scripts
■ Inserted artificial 2 and 3 jump edges
■ Inserted artificial self edges

■ Node data:
◻ N-dimensional embedding vector for atom type (H, C, O, N, F)
◻ Electronegativity, first ionization energy, electron affinity, mulliken charge)

■ Edge data:
◻ N-dim edge type embedding (single, double, triple, self, 2jump, 3jump)
◻ Distance (all edges), angle (2jump only), dihedral angle (3jump only)

■ All standardized to zero mean unit variance

Our data representation



 Our data representation

Distance

An
gl

e
Dihedral Angle

Between HCC 

and CCO planes

Enables rotational and 
translational invariance



 Model

● Inspired by Transformers described in Attention Is All You Need and GAT 
(Graph Attention Networks, Petar Velickovic et al.)

● One regression output per coupling type
● Minimized mean MAE loss instead of mean log(MAE)
● 57.8 million parameters to optimize

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1710.10903


 Embeddings

● Used to embed categorical variables into an N-dim vector space
● Method is very simple:

○ Randomly initialize an CxN matrix where C is the number of categories, while N is the 
chosen embedding vector dimensionality

○ Use these vector representations in your model
○ Allow the optimizer to optimize the matrix

● The optimization process will tend to cluster the vectors of similar 
categories, specifically similar in terms of properties relevant to training task



 Node and Edge Embeddings

 48 dim float64 vector

Atom Type

Embedding

Other Atom Properties

Concatenate

 48 dim float64 vector

Edge Type

Embedding

Distance, Angle, Dihedral

Concatenate

Nodes Edges



 Graph Attention Idea

● Graph Attention:
○ All node embeddings are first transformed with a parameterized function of your choice 

creating a “message”
○ New embedding for node X is an aggregation (sum) over all messages from neighbours 

(including X), weighed by an “attention coefficient” which is calculated by:
■ Applying a parameterized function of your choice to a concatenation of the pair of messages
■ Normalizing the results of this function to sum to 1 over all neighbours

● Multi-head Attention:
○ Same as above, but with multiple (N) attention coefficients and N different node embedding 

transformation functions
○ The resulting N embeddings are then either reduced using mean or sum reduction, or 

concatenated
● Problem with this approach

○ Doesn’t include edge properties in the update



 Our Multi-Head Attention

● Incorporates edge embeddings into the process
● We’ve used 24 attention heads and 48d embeddings resulting in a 1152d vector 

representation of each node and edge

Softmax



 ReLU, LeakyReLU and pReLU

● Most commonly used non-linearity today is Rectified Linear Unit (ReLU)
● The derivative of ReLU is 0 for negative inputs, creating a ‘dead ReLU problem’
● LeakyReLU was created to mitigate this problem, by having a small negative 

derivative alpha
● pReLU is a parametric LeakyReLU where alpha is a trainable parameter

ReLU LeakyReLU



 Attention

 1152d vector

Atom Type

Embedding

Other Atom Properties

Concatenate

 1152d vector

Edge Type

Embedding

Distance, Angle, Dihedral

Concatenate

Nodes Edges

Multi-Head Attention



 Layer Norm

● Layer Normalization; Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton
● In deep networks, neuron activations tend to die out or explode making it hard to 

train them
● Activation normalization between layers can help stabilize the network
● Layer Norm normalizes inputs to a layer to zero mean unit variance
● After normalization, Layer norm applies scaling and shifting using two trainable 

parameters

H - Number of neurons in the layer
l   - Layer
a  - Activation from the previous layer (input the current layer)

https://arxiv.org/abs/1607.06450


 Normalisation and non-linearity

 1152d vector

Atom Type

Embedding

Other Atom Properties

Concatenate

 1152d vector

Edge Type

Embedding

Distance, Angle, Dihedral

Concatenate

Nodes Edges

Multi-Head Attention

Layer Norm Layer Norm

pReLU pReLU



 

Multi-Head Attention

Layer Norm
pReLU

Layer Norm
pReLU

Stacked attention blocks

 1152d vector 1152d vector

Nodes Edges

Multi-Head Attention

Layer Norm
pReLU

Layer Norm
pReLU

Atom/Node Embedding Bond/Edge Embedding



 Residual connections

● Very deep NNs (VDNNs) suffer from diminishing gradients as we move back 
towards first layers of the network, causing significant training slowdown

● Residual (skip) connections sum the output of a layer with it’s inputs

● Skip connections create a shorter path for gradients to flow through, thus 
mitigating the diminishing gradients problem

● It was also observed that loss surfaces in VDNNs are very rough
● Same network architectures with skip connections have much smoother loss 

surfaces (Visualizing the Loss Landscape of Neural Nets)

https://arxiv.org/abs/1712.09913


 Gated Residual connections

● However it was observed that Deep Residual Networks diminish in accuracy with 
as the number of layers increases

● To mitigate this issue Gated Residual connections were proposed, which are a 
linear interpolation between x and f(x) with trainable interpolation factor

● These have been shown to perform much better and start diminishing in accuracy 
with a higher number of layers/blocks



 

Multi-Head Attention

Layer Norm
pReLU

Layer Norm
pReLU

Stacked attention blocks

 1152d vector 1152d vector

Nodes Edges

Multi-Head Attention

Layer Norm
pReLU

Layer Norm
pReLU

Atom/Node Embedding Bond/Edge Embedding

GR

GR



 Output layers

8d vector of 
predictions

Nodes Edges

Multi-Head Attention

Layer Norm
pReLU

Layer Norm
pReLU

Atom/Node Embedding Bond/Edge Embedding

GR

512d Linear
pReLU

8d Linear

● Since we have artificial 2 and 3 jump 
edges we can read predictions directly 
off of edges

● 8-dim output, one output per SCC type
● Edges with no labels do not contribute 

to loss
● Our graphs are directional, and we have 

edges in both directions, so we get 2 
predictions per atom pair

● 2 predictions are independently 
minimized in training, but are averaged 
to get a final test prediction acting as a 
“mini-ensemble”



 LAMB optimizer and LAMBW

● Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
● Uses ADAM as the base

○ ADAM is SGD with momentum, with adaptive learning rate per parameter
● Controls the size of updates by introducing trust ratio:

● LAMBW
○ LAMB implementation includes weight decay (-wd*theta) into the update vector directly, so 

WD is included into the trust ratio calculation and is attenuated by it
○ Our modification LAMBW (inspired by ADAMW), removes WD from the update and applies it 

post hoc

https://arxiv.org/abs/1904.00962


 

● Averaging Weights Leads to Wider Optima and Better Generalization
● DNNs make a tight fit to the training set so small statistics shift in the test set 

could result in bad accuracy, but how and why?
● Wide and flat minima have been shown to generalize better
● Once SGD converges it “bounces” around the minimum, landing on the slope of a 

minimum
● This leaves some directions in parameter space with very steep loss increases, 

so any shift along those directions could cause large drops in accuracy
● SGD “bouncing” can be interpreted as sampling parameters from the surface of 

a sphere centered at the minimum with radius proportional to the learning rate
● If we keep the learning rate constant, and sample enough parameter vectors we 

can average them to get to the center of the sphere reaching the flatter area less 
prone to errors with small shifts

Stochastic Weight Averaging

https://arxiv.org/abs/1803.05407


 Stochastic Weight Averaging



 Training Regime

● Overview:
○ Pre-trained one model for all SCC types, then fine tuned for each type
○ Training set split into 90%/10% train/eval split
○ Trained with 0 mean 1 variance target, as well as just shifted 0 mean
○ Entire procedure repeated twice with two random train/eval splits

● Training procedure:
○ Pre-train phase, optimizing mean MAE per type

■ 30 epoch LR cycle (1e-3 to 1e-2), 5e-2 weight decay (WD from now on)
■ Constant 1e-3 LR, 1e-2 WD until convergence (~70 epochs)

○ Fine-tune phase, optimizing MAE for one type
■ Constant LR 1e-3, 1e-2 WD until convergence (~100 epochs)



 GPU Runtimes

Model Train time Test time Private/Public score

Final 200 GPU hr 40 GPU min -3.18085 / -3.18667

One model per type ~85 GPU hrs 20 GPU min -3.13853 / -3.14362

One model per type, 
estimated Mulliken

~85 GPU hr 20 GPU min -3.072 / -3.07331

Single model, 
estimated Mulliken

~24 GPU hr 4 GPU min -2.96183 / -2.96443


