MACHINE LEARNING AND
APPLICATIONS GROUP

The notion and solving of
known MDPs

Nikola Popovic

RL vs. Supervised learning

* Supervised: For each x() we know the correct y®)

e Sequential problems:
* We only know how good the outcome is
* We do not know how good each action is
* Examples: Chess, robot control, ...

e RL tries to learn which actions are good in which states, based on a lot
of attempts

This slide has been taken from [3]

Example: Grid world

We start at the state (1,1)
We can move North, South, East, West

Noisy movement:

* 80% of the time, the action North takes the agent
North (if there is no wall there)

* 10% of the time, North takes the agent West; 10%
East

* If there is a wall in the direction the agent would
have been taken, the agent stays put

Rewards:
* Small reward at each step (living cost)
* Big reward at terminal states (termination cost)

Goal: Maximize sum of rewards

2 3
Picture taken from [1]

Grid World Actions

Deterministic Grid World Stochastic Grid World

Pictures taken from [1]

MDP

* Sequential decision problem
* Fully observable environment
* Stochastic environment: P(S;41|s¢, a;)

* Markovian transitions:
P(s¢v1lSe @) Se—1, @1 S0, o) = P(S¢41lSe, ar)
 Utility as a (discounted) sum of rewards:

U([So, S1, Sz, 1) = R(so) + YR(s1) + ¥2R(s3) + -

Elements of a MIDP

e States s
 Actions a

* Transition model P,,(s") = P(s’|s,a)
* Probability that applying a in s leads to s’

* Reward function R(s)
* Could also be R(s,a,s’)

* Discount factory € [0,1]

Policies

e Can a fixed sequence of states be a solution, like in classical search?
* No, the environment is stochastic

* We should specify what the agent needs to do in every state
* Policy m: S — A recommends an action for every state

* Optimal policy m * gives highest expected utility

* With m * we can construct a simple reflex agent

Picture taken from [1]

Example of optimal policies in Grid World

R(s) = -0.03

R(s)

s)=-0.4 Pictures taken from [1] R(s) =-2.0

O
o
=

R(s) =

Utilities over time

 Utilities evaluate sequences of states
* We will discuss infinite horizon
e With finite horizon, the optimal action in s could change over time
* If we assume stationary preferences:
r a1, a9,...] = |rb1,ba,...] & lay,ao,...] = |b1,bo,..]

* Then there are only 2 ways to define utilities

 Additive utilities: U(|sg, S1, S2,---]) = R(sg) + R(s1) + R(s3) + -

* Discounted utilities: U([sg, S1, Sz, -..]) = R(Sg) + YR(s1) + Y*R(s3) + -
* ¥ € |0,1] in infinite horizons:

U([SOI S1, 52,]) = Z?:O th(St) = Rmax/(1 _]/)

Value of s using i

 Value of a state s using policy m:
V™(s) = E{R(so) + YR(s1) + Y°R(s;) + -+ |m, 5o = 5}
(The expected utility from s to the terminal state using m)

* Bellman equations:
V™(s) = E{R(s¢) + y(R(s1) + YR(s3) +)|, 50 = s}

= R(s) +YE{(R(s1) + YR(s3) + -+)|m}
= R(s) +yE {V”(sl)}
(5, 1(s) 23 57)

— R(S) + VZ Psn(s) (S)Vn(sl)

(N non-linear equations with N; unknowns)

Example of a Bellman equation

Picture taken from [1]

VT™(sp) = R(sp) + V(Pso,up (5)V™(S)
+Ps up(Sp)V™(sp)
+Fsoup (s)V (sc))

= R(sq) + y(0.1V7™(s,)
+0.8V7(s;)
+0.1V7(s,))

Pso,up(sa) =0.1 Pso,up(sb) = 0.8 Pso,up(sc) = 0.1

Optimal policy T*

e Optimal value of a state s:
V*(s) = max V™ (s)
T

= R(s) + mgxyz P.,(s"HV*(s")

(N non-linear equations with N unknowns)

* Optimal policy:
n*(s) = argmax Z P.,(s"HV*(s")
a !/
S

Example of a optimal value Bellman equation

V*(s) = R(s) + Vmgx [ZS’ s,up(S,)V*(S’);
ZS’ s,down(S’)V*(S’);
st Ps1ere (sHV(s"),
ZS’ s,right(S,)V*(S’)]

Picture taken from [1]

Example: Grid world optimal values

Cridworld Display

Noise = 0.2
VALUES AFTER 100 ITERATIONS Discount = 1

Living reward =0

Picture taken from [1]

Example: Grid world optimal values

Cridworld Display

1'§<

Worth Now

8 4

Worth Next Step

) ' A

Y Noise =0.2
Worth In Two Steps VALUES AFTER 100 ITERATIONS Discount = 0.9

Pictures taken from [1] Living reward =0

Cridworld Displz

Example: Grid world optimal values

0.31 0.51) 0.72) 1.00

Noise = 0.2
VALUES AFTER 100 ITERATIONS Discount = 0.9

Living reward =-0.1

Picture taken from [1]

Value iteration

* Task: For given R(s), P,,(s") and y compute V*(s), Vs
* Assumption: finite number of states, and actions in each state

* Value iteration:
* 0. Initialization: V,(s) = 0, Vs
e 1.fort = 1,2,3, ... (untill convergence) do:

Ve(s) = R(s) + ymax) Poa(s") Ve ()

* Bellman equations have a unique solution
* Convergence: V;(s) doesn’t differ much from V;_;(s)

Value iteration

Vi(s) = R(S) +ymax) Pea(s) Vs ()

* Complexity of each iteration: O(|S|%|A]):
* We have to update the value of every state s € §
* For every state s: we have to take into account every action a
* For each (s, a) pair we have to analyze all successor states s’

* Sinchronous updates: computed V;(s)’s are used in the next iteration
for the first time

* Asynchronous updates: Use computed V;(s)’s for computing the rest
of the V;:(s)’s

Example: Value iteration (discount + no living reward)

Noise = 0.2

VALUES AFTER O ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Noise = 0.2

VALUES AFTER 1 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Noise = 0.2

VALUES AFTER 2 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Noise = 0.2
VALUES AFTER 3 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 4 ITERATIONS Discount =0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 5 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 6 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 7 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 8 ITERATIONS Discount =0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 9 ITERATIONS Discount = 0.9
Living reward =0

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 10 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 11 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 12 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Example: Value iteration (discount + no living reward)

Cridworld Display

Noise = 0.2

VALUES AFTER 100 ITERATIONS Discount = 0.9
Living reward =0

Picture taken from [1]

Value iteration: Convergence

* Bellman equations have a unique solution

* Interpretation: V;(s) is the optimal value if we have t moves left:
* Vy(s) = 0: we cant make moves anymore
* V;(s) = R(s) : we can only collect the current reward
* Va(s) = R(s) +ymax 2o Psa(s") R(s")

* Convergence:

* Bellman update is a contraction on the space of value vectors:
max |Viy1(s) —Vip1(s)'] s ymax|Vi(s) —Vi(s)'|

v

max [Vi1(s) —V*(s)| =ymax|Vi(s) —V(s)|

Value iterations flaws

e Its slow: O(|S|?|A|) for every iteration
* The max(.) rarely changes its choice of a
. Bigccl:omputational expense
* The extracted policy usually converges long before the values do

* We can also compute V™ (s) in a similar way:

Ves) = RES) ¥) Pengey () Veoa ()

(suitable for large |S|)

Example: Policy evaluation

Always Go Right Always Go Forward

Pictures taken from [1]

Example: Policy evaluation

Always Go Right Always Go Forward

Pictures taken from [1]

Policy iteration

* |nitialization: Pick a random 1

e fort = 1,2,3, ... (untill convergence) do:
* 1. Policy evaluation:
Calculate V™t(s) (N x N, linear system or Bellman updates)
e 2. Policy update:

T;41(s) = argmax z Psq (s)V™t(s")
a S’

* Policy iteration with Bellman updates is often much more efficient
than Value iteration or standard Policy iteration

* Convergence: V™t (s) converged or if m;;1(s) = m; (s)

References

[1] UC Berkeley: CS188 Intro to Al, lecture slides,
http://ai.berkeley.edu/lecture slides.html - Lecture 8: MDP | and
Lecture 9: MIDP Il (last visited: 11.03.2018)

[2] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach 3" edition, Prentice Hall, 2009.

3] Faculty of Electrical Engineering, University of Belgrade: Statisticka
clasifikacija signala, lecture materials,
nttp://automatika.etf.bg.ac.rs/images/FAJLOVI srpski/predmeti/master

studije/SKS/09%20Ucenje%20podsticanjem.pdf (last visited:
11.03.2018)

http://ai.berkeley.edu/lecture_slides.html
http://automatika.etf.bg.ac.rs/images/FAJLOVI_srpski/predmeti/master_studije/SKS/09 Ucenje podsticanjem.pdf

Questions?

Thanks for the attention! ©

