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Common computer vision tasks

Classification Classification with localization Detection Segmentation

In classification we predict the class Here we predict the class label of an Object detection involves localization  Image segmentation is the process
of an image. image as well as position of a of multiple objects (that doesn’t have of partitioning an image into
bounding box surrounding the object.  to belong to the same class). multiple segments.




Semantic segmentation - problem
definition

a

The goal of semantic segmentation of an image is to label each and every pixel of an
image with a corresponding class of what is being represented.

4 Because we're predicting for every pixel in the image, this task is commonly referred to as

dense prediction.

Input Output

Input Output




Semantic segmentation vs instance
segmentation

A Semantic segmentation does not separate instances of the same class. It only predicts
the category of each pixel.

A Instance segmentation is another approach for segmentation which does distinguish
between separate objects of the same class (an example would be Mask R-CNN).

Semantic segmentation Instance segmentation

[l Kaiming He, Georgia Gkioxari, Piotr Dollar, Mask R-CNN, CVPR 2017.




Applications

[d  Autonomous vehicles |

Deeplab V3 xception._cityscapes_trainfine (crxsaou)n _s Elis:
Pradicion time: 405ms (2.5 fps) AVG: 356ms (2 §

Satelllte (Or Aerlal) Image Processing

A  Medicine

2

Organ segmentation Substructure segmentation Lesion segmentation
(4  Fashion industry, scene understanding, etc...



Representing the semantic

segmentation task
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segmentation map where each pixel contains a class label represented as an integer.
heightxwidthx3 (RGB color image)
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(A Target can be created by one-hot encoding the class labels - essentially creating an

A The goal of semantic segmentation is to take an image as

heightxwidthx1 (grayscale image)




Constructing an architecture

A A naive approach: simply stack a number of convolutional layers (with same padding to
preserve dimensions) and output a final segmentation map.

A This directly learns a mapping from the input image to its corresponding segmentation
through the successive transformation of feature mappings; however, it's quite
computationally expensive to preserve the full resolution throughout the network.

; Conv mConv ﬁConv Conv
—t — — P g
b
\/

pixel-wise softmax activation

= Output Segmentation map
Convolutions H x W x N_classes HxWx1
HxW xD
feature extraction : \

final output retains original image dimensions




Resolving computational burden

a

In order to maintain expressiveness, we typically need to reduce height and width of
feature maps as we get deeper in the network. This is fine for classification but not for

semantic segmentation!

Resolution: encoder/decoder structure where we downsample the spatial resolution of
the input, developing lower-resolution feature mappings which are learned to be highly
efficient at discriminating between classes, and the upsample the feature
representations into a full-resolution segmentation map.

Med-res Med-res
H/4 x W/4 x D, H/4 x W/4 x D

Low-res
H/8 x W/8 x D,

Input High-res High-res Segmentation map
HxWx3 H/2xW/2xD1 H/2xW/2xD1 HxWx1




Methods for upsampling

A Whereas pooling operations downsample the resolution by summarizing a local area with
a single value, "unpooling" operations upsample the resolution by distributing a single
value into a higher resolution.
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Transposed convolution

A Transposed convolution is by far the most popular approach as it allows us to develop a
learned upsampling.

(A In transposed convolution, we take a single value from the low-resolution feature map

and multiply all of the weights in our filter by this value, projecting those weighted values
into the output feature map.

3 x 3 transpose convolution, stride 2 pad 1 I S Output

Input

Filter
e » Filter moves 2 pixels in <
Input gives [ the output for every one a
L az f+|bx

weight for —— pixel in the input —
filter b
| sStride gives ratio between k by
movement in output and
input \ bz
Input: 2x 2 Output: 4 x 4

Transposed convolution - 2d example Transposed convolution - 1d example




Transposed convolution

A Transposed convolution can be represented as a convolution with some modification of
the input.

stride 1 and 2x2
and no padding applied to a 4x4 padding stride of 2x2 and no padding applied padding
input to give a 6x6 output. to a 2x2 input to give a 5x5 output.

Conv2DTranspose with 3x3 kernel Conv2D with stride 1 and 2x2 A Conv2DTranspose with 3x3 kernel,  Conv2D with




Defining a loss function

A The most commonly used loss
function for the task of image
segmentation is a pixel-wise
cross entropy loss.

A Problem: Model is biased
towards the most prevalent
class.

Pixel-wise loss is
calculated as the log
loss, summed over all
possible classes

=Y Ve 102(5pred)

classes

This scoring is
repeated over all
pixels and averaged

Prediction for a selected pixel Target for the corresponding pixel



Soft Dice loss

(d  Dice coefficient is essentially a measure of overlap E§

between two samples. E U E
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Fully Convolutional Networks for
Semantic Segmentation (FCN)

d  In FCN paper'? authors utilized classification networks to serve as the encoder module of the network,
appending a decoder module to upsample the coarse feature maps into a full-resolution segmentation map.

4  Adding layers and a spatial loss (pixel-wise cross entropy loss) produces an efficient architecture for
end-to-end dense learning.

forward/inference

backward/learning

The FCN end-to-end dense prediction pipeline

I Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully Convolutional Models for Semantic Segmentation, CVPR 2015.




FCN: From classifier to dense prediction

“tabby cat”
0000 O
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convolutionalization

¢ tabby cat heatmap

(A Encoder: AlexNet, VGG, and GoogleNet
classification networks.

(d  Decoder: Transposed convolution layers.

FCN- FCN- FCN-
AlexNet VGG16  GoogLeNet*
mean [U 39.8 56.0 42.5
forward time 50 ms 210 ms 59 ms
conv. layers 8 16 22
parameters 57T™M 134M 6M
Results on the on the validation set of Transforming fully connected layers into convolution
PASCAL VOC 2011F! layers enables a classification net to output a heatmap

BI'http://host.robots.ox.ac.uk/pascal/VOC/voc2011/index.html




FCN: Combining what and where
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FCN-32s FCN-16s FCN-8s Ground truth

pixel mean mean f.w.
acc. acc. IU IU

FCN: results
FCN-32s-fixed 83.6 59.7. 454 72.0

B. ¥,
FCN-8s | 90.3 759 627 832 l.l ;

FCN-32s | 89.1 733 594 814
FCN-16s | 90.0 757 624 83.0

Comparison of skip FCNs on a PASCAL VOC Refining fully convolutional nets by fusing information from
2011 dataset. layers with different strides improves segmentation detail.
mean [U mean [U inference
VOC2011 test VOC2012 test time
R-CNN [12] 479 = N
SDS [17] 52.6 51.6 ~50s
FCN-8s 62.7 62.2 ~ 175 ms
Results on the PASCAL VOC 2011 and 2012
test sets.



U-net

A Initially developed for the segmentation aanins 3
of biomedical images.

ini1r:=1‘z;~let > output )
O The U-net™ architecture consists of a e | Zamemad

contracting path to capture context and
a symmetric expanding path that
enables precise localization.

Create high resolution
segmentation mask

d Won the segmenting and tracking
moving cells challenge at ISBI 2015.

=»conv 3x3, ReLU
=& copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1

28

Q
&

Increase the “What” :
Reduce the “Where”

[4I 0laf Ronneberger, Philipp Fischer, and Thomas Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015.

B1'1SBI 2015 : International Symposium on Biomedical Imaging, https://biomedicalimaging.org/2015/.



U-net: loss function

(d  Authors used weighted pixel-wise cross entropy loss which force the network to learn the border pixels.

pi(z) = ezp(ar(2))/ X, ezp(an (@)

E =Y ,.qw(z)log(p(z))

w(z) = we(z) + wo - ea:p( — W)

ar (a:) - activation in feature channel k at the pixel position x

K - number of classes

[(x) - ground truth label at position x

'w(x) - total weight at the pixel position x

We (-’E) - weight value to balance the class frequencies
d, - distance to the border of the nearest cell

d, - distance to the border of the second nearest cell

wy = 10 (a) raw image (b) overlay with gr?”“d (c) mask for semantic (d) weight map
truth segmentation segmentation

oXbH




U-net: overlap-tile strategy for
seamless segmentation

(d  Overlap-tile strategy allows the seamless segmentation of arbitrarily large images by splitting input
images into tiles (this may help us to overcome GPU memory limitations).

(d  To predict the pixels in the border region of the image, the missing context is extrapolated by mirroring
the input image.

Result of segmentation within the yellow lines requires image data within the blue lines as input.
Solid lines refer to the first segmentation and dashed line refers to the second segmentation. By
repeating this process, an entire segmentation mask will be obtained for each slice.




U-net: results

Part of an input image of the “PhC-U373” data set (left). Input image of the “DIC-Hela” data set (left).
Segmentation result (cyan mask) with manual ground Segmentation result (random colored masks) with
truth (yellow border) - right. manual ground truth (yellow border) - right.
Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014)  0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

Segmentation results (loU) on the ISBI cell tracking challenge 2015




The One Hundred Layers Tiramisu: Fully Convolutional
DenseNets (FC-DenseNet) for Semantic Segmentation

@ In this paper!® authors utilized ideas from the DenseNets!”!
to deal with the problem of semantic segmentation.

(4 The network is composed of a downsampling path
responsible for extracting coarse semantic features,
(consisting from convolution, transition down and dense
blocks) and an upsampling path trained to recover the
input image resolution (consisting from convolution,
transition up and dense blocks).

B Dense Block B Convoition
[l Trensition Down B Transition Up
-==» Skip Connecfion Concctenation

6] Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio, The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation, CVPR 2017

7] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger, Densely Connected Convolutional Networks, CVPR 2017



FC-DenseNet: from standard
convolution to dense block

TN

Standard ConvNet Concept

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Dense Block in DenseNet with
Growth Rate k Concept



FC-DenseNet: Dense block

Let x, be the output of the ™" layer.

Input m channels

In a standard CNN, x, is computed by applying a non-linear transformation H (usually convolution

K channels
followed by a ReLU and often dropout) to the output of the previous layer x, ,:
I = Hl (a:l—].) K channels
Pushing this idea further, DenseNets design a more sophisticated connectivity pattern that
iteratively concatenates all feature outputs in a feedforward fashion. Thus, the output of the I
layer is defined as: K channels
7 = Hi([z)-1, 219, . .., Z9]) o
where [ ... ] represents the concatenation operation. In this case, H is defined as batch K channels
normalization, followed by RelLU, a convolution and dropout.
Output 4K channels

el G S N

Diagram of a dense block
of 4 layers.




FC-DenseNet: resolving computational
burden

Problem: Since the upsampling path increases the feature
maps spatial resolution, the linear growth in the number of
features would be too memory demanding, especially for the
full resolution features in the pre-softmax layer.

4 Resolution: In order to overcome this limitation, the input of a
dense block is not concatenated with its output. Thus, the
transposed convolution is applied only to the feature maps
obtained by the last dense block and not to all feature maps
concatenated so far.

Input of a dense block is not
concatenated to it’s output

B Dense Block B Convoition
[l Trensition Down B Transition Up
-==» Skip Connecfion Concctenation



FC-DenseNet: network architecture

| Architecture |
Input, m = 3
3 x 3 Convolution, m = 48 %
DB (4 layers) + ID, m = 112 T
DB (5 layers) + TD, m = 192 B | Transition Down (TD) |
DB (7 layers) + TD, m = 304 >§ | e | Batch Normalization e
DB (10 layers) + TD, m = 464 | § Batch Normalization e | Transition Up (TU) |
DB (12 layers) + TD, m = 656 ) a ReLU . 1% 1 Convolution 3x3 Transpgsed Convolution
Bottleneck => DB (15 layers), m = 896 1% 3 Convolution Dropout p = 0.2 Sitide= 3
TU + DB (12 layers), m — 1088 | ¢ Dropout p = 0.2 2 x 2 Max Pooling
2%1?)]?3((1701;?};22’;”:_587186 ;n Building blocks of fully convolutional DenseNets
TU + DB (5 layers), m = 384 >‘_El
TU + DB (4 layers), m = 256 §
1 x 1 Convolution,m =c¢ | ) =
Softmax

Architecture details of
FC-DenseNet103 model



FC-DenseNet: results

=) )
4 g
j41 =
3 51
Bl E || 2 & «| _ || B|E
§ s E=] =z I z ] = =
Bl 203 2 lzls|8| 2|2 |5 2|2 |2(8|:¢
Model [ 4 - = 7] o @A & & = 4 7] Q = (G] Model || Acc.
SegNet [1] v [ 295 [[ 687520 87.0 [ 585 [ 134 [ 862 | 25.3 [ 17.9 [ 16.0 | 60.5 | 24.8 [[ 46.4 | 62.5 2D models (no time)
Bayesian SegNet [15] v | 295 n/a 63.1 | 86.9 2D-V2V-from scratch [34] E5.7
DeconvNet [21] V| 252 n/a 48.9 | 85.9 -
Visin et al. [36] v | 323 n/a 588 | 83.7 FC-DenseNet103 794
FCNS [20] V| 1345 [ 778 [ 710 [ 887 [ 76.1 [ 327 [ 91.2 [ 41.7 [ 24.4 [ 19.9 [ 72.7 | 31.0 || 57.0 | 88.0 3D models (incorporate time)
DeepLab-LFOV [5] V[ 373 [[ 815 | 746 [ 89.0 | 82.2 [ 423 [ 92.2 | 48.4 | 27.2 [ 143 [ 754 | 50.1 || 61.6 | — 3D-V2V-from scratch [34] || 66.7
Dilation$ [37] v [ 1408 || 82.6 | 76.2 [ 89.0 | 84.0 | 46.9 [ 92.2 | 56.3 | 35.8 | 23.4 | 75.3 | 55.5 || 65.3 | 79.0 3D-V2V-pretrained [34] 76.0
Dilation8 + FSO [17] | v/ | 140.8 || 84.0 | 77.2 | 91.3 | 85.6 | 49.9 | 92.5 | 59.1 | 37.6 | 16.9 | 76.0 | 57.2 || 66.1 | 88.3
Classic Upsampling X | 20 || 735 722924662 269 | 90.0 | 37.7 | 22.7 | 30.8 | 69.6 | 25.1 || 55.2 | 86.8 9] .
FC-DenseNetS6 (k=12) | X | 1.5 || 77.6 | 72.0 | 92.4 | 732 | 31.8 | 92.8 | 37.0 | 26.2 | 32.6 | 79.9 | 31.1 || 58.0 | 88.0 Results on Gatech™ dataset (63 videos
FC-DenseNet103 (k=16) | X | 9.4 || 83.0 | 77.3 | 93.0 | 77.3 | 43.0 | 94.5 | 59.6 | 37.1 | 37.8 | 82.2 | 50.5 || 66.9 | 91.5

with 190 frames per video on average.
Results on CamVid'®! dataset (11 classes, 367 training frames, 101 validation frames, 233 There are 8 classes in the dataset.)
testing frames, 360x480 resolution). Architectures: (1) 56 layers (FC-DenseNet56), with

4 layers per dense block and a growth rate of 12; (2) 67 layers (FC-DenseNet67) with 5

layers per dense block and a growth rate of 16; (3) 103 layers (FC-DenseNet103) with a

growth rate k = 16; (4) Classic Upsampling, an architecture using standard convolutions

in the upsampling path instead of dense blocks.

[l http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

8 http://www.cc.gatech.edu/cpl/projects/videogeometriccontext/
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