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Description

Process & analyze visual signal
Extract information from visual signal
Perform on raw signal (pixel intensities values)
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Enhance Intuition

Computer Graphics

(x0, y0) = (3, 4)
r = 6
↓

Computer Vision

↓
(x0, y0) = (3, 4)

r = 6
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Tasks in Computer Vision

Object Recognition
Image Retrieval
Object Detection
OCR
Pose Estimation
...

Tracking
Scene Reconstruction
Optical Flow
Semantic Segmentation
Image Reconstuction
...
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Convolution Operator - Definition

Definition
Let A,B ∈ D ⊆ Rn×n. Convolution operator, denoted as ∗
maps the spaceD×D to a field of real numbers and is defined
as follows:

A ∗ B =

n∑
i=1

n∑
j=1

AijBij
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Convolution Operator - Example

1 2 3
4 5 6
7 8 9

 ∗

0 1 0
1 0 1
0 1 0



8



Traditional Computer Vision Convolutional Neural Networks Object Detection

Convolution Operator - Example

1 2 3
4 5 6
7 8 9

 ∗

0 1 0
1 0 1
0 1 0

 = 2 ∗ 1 + 4 ∗ 1 + 6 ∗ 1 + 8 ∗ 1 = 20

9



Traditional Computer Vision Convolutional Neural Networks Object Detection

Convolution Operator - Example

1 2 3
4 5 6
7 8 9

 ∗

0 1 0
1 0 1
0 1 0

 = 2 ∗ 1 + 4 ∗ 1 + 6 ∗ 1 + 8 ∗ 1 = 20

10



Traditional Computer Vision Convolutional Neural Networks Object Detection

Convolution Operator - Example

1 2 3
4 5 6
7 8 9

 ∗

0 1 0
1 0 1
0 1 0

 = 2 ∗ 1 + 4 ∗ 1 + 6 ∗ 1 + 8 ∗ 1 = 20

11



Traditional Computer Vision Convolutional Neural Networks Object Detection

Convolution Operator - Example

1 2 3
4 5 6
7 8 9

 ∗

0 1 0
1 0 1
0 1 0

 = 2 ∗ 1 + 4 ∗ 1 + 6 ∗ 1 + 8 ∗ 1 = 20

12



Traditional Computer Vision Convolutional Neural Networks Object Detection

Convolution Operator - Example

1 2 3
4 5 6
7 8 9

 ∗

0 1 0
1 0 1
0 1 0

 = 2 ∗ 1 + 4 ∗ 1 + 6 ∗ 1 + 8 ∗ 1 = 20

13



Traditional Computer Vision Convolutional Neural Networks Object Detection

Filters



211 39 200 102 174 25 90 144
138 44 184 110 193 30 92 136
151 73 190 114 189 41 105 128
129 101 123 181 201 169 117 191
140 122 153 231 209 157 124 113
221 115 77 244 198 149 156 247

 ∗

0 1 0
1 0 1
0 1 0


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Filters - Examples

Vertical Edge Extractor
Horizontal Edge Extractor
Sobel filter
Sharpen
Gaussian Blur
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Filters - Edge Extractor

∗

1 0 −1
1 0 −1
1 0 −1

 =
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1 0 −1
1 0 −1
1 0 −1
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Filters - Sobel

∗

1 0 −1
2 0 −2
1 0 −1

 =
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Filters - Gaussian Blur

∗ 1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 =
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Multiple Input Channels

Figure: Convolution of multichannel image
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Multiple Filters

Figure: Convolution of multichannel image with two filters
21



CONVOLUTIONAL NEURAL
NETWORKS

Parameter Learning

Basic CNNs

Residual Networks

Inception Networks
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Basic Concepts

Figure: Convolutional layers stacked
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Basic Concepts - Takeaway

Image Classification
Parameters (filters) Learning [LBD+89]
Weight Sharing
Feature Extraction
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Basic Concepts - Feature Abstractions

Figure: Feature Visualization [ZF13]
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Basic Concepts - Pooling Layers

Sampling important Features
Reduce Computation Time
Make Features Robust
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Basic Concepts - Pooling Layers (Example)

Pooling Layer - Max Pooling


9 2 4 1
3 1 8 2
4 5 9 2
5 6 0 1

 −→
[
9 8
6 9

]
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Basic Concepts - Architecture

Figure: Convolutional Neural Network - Example
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CNN Architecture - Lenet-5

Figure: Lenet-5 Architecture [LBBH98]
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CNN Architecture - VGG

Figure: VGG Architecture
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CNN Architecture - AlexNet

Figure: AlexNet Architecture [KSH12]
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CNN - Problems

Vanishing Gradient
Exploding Gradient
Computational Complexity
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Residual Block

Figure: Residual Block (Skip Connection) [HZRS15]
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Residual Network

Figure: CNN Architecture - ResNet-34 [HZRS15]
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1x1 Convolution

Figure: 1x1 Convolution [LCY13]
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Inception Module - Idea

Figure: Inception Module Naive Version [SLJ+14]
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Inception Module - Redone

Figure: Inception Module With Dimension Reduction [SLJ+14]
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Inception Network

Figure: Inception Network (GoogLeNet) [SLJ+14]
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OBJECT DETECTION

Task Outline

YOLO

RCNN Family

Other Influental Models

Speed/Accuracy Trade-Off
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Visualizing the Task

Figure: Object Detection Task
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Understanding the Bounding Box Error

Figure: Bounding Box Missmatch
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Defining the IoU

Figure: Intersection over Union
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Gaining Intuition on IoU

Figure: Intersection over Union - Example
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Similar Bounding Boxes Problem

Figure: Elimination of Multiple Bounding Boxes
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Non-Maximum Suppression

Threshold every bounding box
Sort bounding boxes by detection probability in
decresing order
For each bounding box bi remove all bounding boxes
bj(j ̸= i) such that IoU(bi,bj) ≥ t for some fixed t
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YOLO - Introduction

Figure: Grid for YOLO

ŷ =



pc
bx
by
bw
bh
c1
c2
...
cn


0You Only Look Once: Unified, Real-Time Object Detection [RDGF15]
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Limitations (already?)

Problem: Multiple objects centered in same cell
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Anchor Boxes

Choose a number of anchors (predefined bboxes)
Select a ratio (width and height) for each of them
Modify the output to include this anchors
...
Profit
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Anchor Boxes - Example

ŷ1 =



pc1
bx1
by1
bw1
bh1
c11
...
cn1


, ŷ2 =



pc2
bx2
by2
bw2
bh2
c12
...
cn2


, ŷ =

[
ŷ1
ŷ2

]
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YOLO - Loss Fucntion

L(y, ŷ) = λcoord

s2∑
i=0

B∑
j=0

1
obj
ij [(xi − x̂i)2 + (yi − ŷi)2]

+ λcoord
s2∑
i=0

B∑
j=0

1
obj
ij [(

√wi −
√

ŵi)
2 + (

√
hi −

√
ĥi)

2]

+
s2∑
i=0

B∑
j=0

1
obj
ij (Ci − Ĉi)

2

+ λnoobj
s2∑
i=0

B∑
j=0

1
obj
ij (Ci − Ĉi)

2

+
s2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))2
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Region Based Approach

Propose Regions of Interest
Classify each RoI
Regress Bounding Box Coordinates
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Region Models

Regions with CNN (R-CNN) [GDDM13]
Fast R-CNN [Gir15]
Faster R-CNN [RHGS15]
Mask R-CNN [HGDG17]
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Region Proposals - Selective Search

Figure: Selective Search Algorithm Visualized
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R-CNN

Figure: R-CNN Pipeline
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Fast R-CNN

Convolution Based Sliding Window
ROI Pooling
Softmax Classification
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Fast R-CNN - Sliding Window

Figure: Sliding Window - CNN Implementation
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Fast R-CNN - Visualized

Figure: Fast R-CNN Pipeline
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Fast R-CNN - Loss

L(p,u, tu, v) = Lcls(p,u) + λ[u ≥ 1]Lloc(tu, v)

Lcls(p,u) = − logpu

Lloc(tu, v) =
∑

i∈{x,y,w,h}
smoothL1(tui − vi)

smoothL1(x) =
{
0.5x2, if x ≤ 1

x− 0.5, otherwise
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Faster R-CNN

Bottleneck: Region Proposals by Selective Search (2s)
Solution: Region Proposals by CNN (0.01s)
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Region Proposal Network

Figure: Region Proposal Network for Faster R-CNN
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RPN - Loss

L(pi, ti) =
1

Ncls

∑
i
Lcls(pi,p∗i ) + λ

1

Nreg

∑
i
p∗i Lreg(ti, t∗i )
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Faster R-CNN - Architecture

Figure: Model Scheme of Faster R-CNN
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Mask R-CNN

Figure: Model Scheme of Faster R-CNN
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Other Influential Models

RetinaNet (Focal Loss) [LGG+17]
Single Shot Detector [LAE+15]
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RetinaNet

Figure: Retina Net - Overview
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Speed vs. Precision

Figure: GPU Time vs. Precision [HRS+16]
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Lecture Pronouncement

CONVERGENCE
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