Introduction to Boosting

Predrag Tadi¢

School of Electrical Engineering
University of Belgrade

MLAGMATF, November 14, 2018

1/42

Outline

Terminology

History

AdaBoost

Variants of AdaBoost
Gradient Boosting

Concluding remarks

2/42

Ensemble (committee)

training data training data

| Qutput 1 I | Qutput 2 |

[dataversioncontrol.com]

3/42

https://blog.dataversioncontrol.com/ml-model-ensembling-with-fast-iterations-91e8cad6a9b5

Bootstraping

» Sampling N out of N with replacement, M times.

» 30% of examples are not chosen in each sample.

Super Population
Sample Population 1

Sample Population 2

Sample Population 3

[hackernoon.com]

4/42

https://hackernoon.com/how-to-develop-a-robust-algorithm-c38e08f32201

Weak learner, strong learner

Weak learner simple classifier, slightly better than guessing

Strong learner can achieve arbitrary accuracy with enough data

[Kidsday staff artist / Maggie Flaherty, Merrick]

5/42

Weak learner, strong learner
In the PAC framework

> Notation
{xi, yitN training set
P distribution of training set
f(x)=y true hypothesis
h(x) =y learned hypothesis

Prp [h(x) # f(x)] generalization error

» Strong learner (SL)
» forany P,f,0,e >0
for large enough N
outputs a classifier with Prp [h(x) # f(x)] < €
with probability at least 1 — ¢
» Weak learner (WL)
for any P,f,8 and some 0 < e < 1/2
for large enough N
outputs a classifier with Prp [h(x) # f(x)] <€
with probability at least 1 — ¢

v vy

v

v vy

6/42

Bagging & Boosting: training

bagqging boosting

[quantdare.com]

7/42

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

Bagging & Boosting: decision

bagging . boosting

[quantdare.com]

8/42

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

History

1989 Does weak learnability imply strong learnability [K\V94]?
1990 3 weak learners on 3 modified distributions [Sch90]
1995 Boosting by majority [Fre95]

1996 AdaBoost [FS96]

2001 Gradient Boosting [Fri01]

2016 XGBoost [CG16]

9/42

First boosting algorithm [Sch90]

v

v

v

v

Requires a continuous stream of labeled data.

Learns 3 hypothesis on 3 modified distributions.

Outputs their majority vote.
Algorithm:

1.

2.

Randomly choose first first N samples.

Use them to learn hy.

Choose next batch so that N /2 samples are misclassified by h;.
Use it to learn ho.

Choose next batch of N samples so that h; and h, disagree.
Use it to learn hs.

. Apply recursively.

10/42

AdaBoost

@

X3

[sebastianraschka.com]

11/42

https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html

AdaBoost

Preliminaries

hi(x) I-th WL, hj(x) = £1 (e.g. stump or perceptron)
oy voting weight of /-th WL
wy; weight of i-th example in /-th iteration, E,N:l wri=1

» Hypothesis (strong learner) after k iterations

H) = 5 30 auhi(x)

=1

» In iteration k, min exponential loss w.r.t. ay and hi(x) only
N
Ek = Zi:l exp [—y,'Hk(X,')]

= Z,N:1 exp [—y,'Hk_l(X,')] exp [—;y;akhk(x;)}

Wk, i

12/42

AdaBoost

Training
» Initialization: w11 = =win=1/N
» For k=1,..., K (until convergence)

1. Train weak learner

N
choose hy to minimize Ji = Z_il wi,il{hi(xi) # yi}

2. Compute its voting weight

N
€k = Zi:1 wi,i L {he(x;) # yi} (weighted error)
1-— €k

ax=In (voting weight)

€k
3. Update sample weights for next iteration

N
1{ he(xi f _
Wk+1,i X wk,;e“k {hi(x);éy}, E i1 Wk+41,i = 1

13/42

AdaBoost

Convergence

> Loss is an upper limit on training error

N E,
~ é H ; < =K
€k jé;: { k)/ < ()} SN

> If weighted error is < % — 0 for each WL

Ee < V14026, < (1-4))*N (B < N)
» Both the loss and the training error are always decreasing!

» Zero training error after finite number of iterations

In N

=0 for k>-2——"" _
Ge=0 or k=2)

14/42

AdaBoost

Convergence

1.0

0.8

Training Error

Exponential Loss

0.2

Misclassification Rate

0.0
|

0 100 200 300 400

Boosting Iterations

[HTFO09]

15/42

AdaBoost |

Margins & Overfitting

» Margin in boosting iteration k for example i

Yk,i = yiHi ()

» Assume zero training error: v, ; > 0, Vi
» Exponential loss E, = Z,N:1 e ki can still be reduced!

> Loss reduces more sharply for examples with smaller , ;

Exponential loss for 1 example

1.0

0.8
0.6 [
0.4

0.2

low margin

Loss

high margin

0.0 ®

Margin

16/42

AdaBoost I

Margins & Overfitting

» AdaBoost tends to increase worst-case margin min; 7y ;
» How does AdaBoost avoid overfitting?

» Stagewise addition of new learners makes learning slow
» Impact of change is localized as iterations procees
» Worst-case margin is pushed up (?)

17/42

AdaBoost

Why exponential loss?

» Expected exponential loss is minimized for

H*(x) = argminEy |, e YH(X)

H(x)
» For binary classification with Y = +1
Ev x e YHO) — pr(y = 1|x)e M) £ Pr(Y = —1]x)eH®
» Differentiating w.r.t H(x) and setting to zero gives

w1 Pr(Y=1][x)
H(x) =5 ey =170

18/42

v

v

v

Now, assume Y ~ Bernoulli(¢(x)) with

1

o) = T e

Negative log-likelihood loss is given by
“I(H(X)) = —In (1 n e—YH(X>>
Population minimizer is the same as for exponential loss

argmin Ey |, e YH() — arg max Eyx/(H(x))
H(x) H(x)

Equivalence does not hold for finite data sets!

19/42

Loss functions for 1 example

Exponential
Log-likelihood

-20 -15 -1.0 -05 0.0 0.5 1.0
margin

» Exponential loss puts more emphasis on misclassified examples

» Log-likelihood loss is more robust if

» Bayes error rate is high
» there are mislabeled data

T T

15 2.0

20/42

Real AdaBoost [FHT00]
» Initialization: wgl) =...= ng) =1/N
» For k=1,..., K (until convergence)
1. Fit classifier to target

pr(x) = P(Y =1]x)
2. k-th weak learner outputs

_ 1 p(x)
he(x) = 5 In #%(X)

3. Update and re-normalize the weights

N
Wk+1,i X Wk, i €xp [—yihi(xi)], 2121 Wit1,i =1

» Ensemble output is
K
Hie) = sign (31,)

21/42

LogitBoost [FHTOO]

vV v v v

Additive logistic regression models.

Newton optimization of the Bernoulli log-likelihood.

Start with H(x) =0, wi.y = 1/N and p(x;) =1/2

At iteration k, compute the weights and “working responses”

wj = p(xi) (1 — p(xj)), 2z =min {]l{yi =1} - P(Xi)7zmax}

Wi

Find hy(x) via weighted least-squares
hix(x) = argmin Z wj [zi — h(xj)]?
h(x)
Update strong learner and probabilities
H(x)

1
H(x) ¢ He) + 50, p(x) < gy

22/42

Other AdaBoost modifications

v

Gentle AdaBoost [FHT00]

» Real AdaBoost + Newton steps
» weighted least-squares regression instead of Pr estimates
» more stable: no computation of log-ratios

LPBoost [DBSTO02]
> maximizes margin between classes
> learning is formulated as a linear programming problem
» totally corrective: weights of all past WLs are updated
Brown Boost [Fre01]

» “gives up” on repeatedly misclassified examples
» robust to misslabeled datasets

v

v

» Many many more [FF12]

23/42

Gradient Boosting |

Toy example: sinusoidal regression

Regression training set

1.5

1.04

0.5 A1

0.0 A

—0.5 1

—1.0 1

_15 B

0.0

0.2 0.4

24/42

Gradient Boosting Il

Toy example: sinusoidal regression

Initial regression stump

1.5 A [—— ho(x)
% o e ¥ I
1.0 A ° <
°
°
e o ®
°
® ®
® L] Py
° °
-1.0 ° e
—1.5 1 ® °
°
0.0 0.2 0.4 0.6 0.8 1.0

25/42

Gradient Boosting Il

Toy example: sinusoidal regression

hi1(x) fits the residuals r=y — ho(x) of the 1st stump

— hi(x) L
o r
1.0 1 °
L)
°
051 % o o H
° e o
“ 00d e 'Y L .‘ . o ® '.
' —e .
° ® e ° "o
° °
—05- °
0.3 ° °
°
~1.0 1 o ° °
°
0.0 0.2 0.4 0.6 0.8 1.0

Gradient Boosting IV

Toy example: sinusoidal regression

Strong learner Hy(x) = ho(x) + h1(x)

15 T . . —_ H_l(X)
e vy
1.04 :o ° |

—1.5 1 L °

27/42

Gradient Boosting V

Toy example: sinusoidal regression

Strong learner Hip(x)

1.5 A1

1.0

_15 4

0.0

0.2

0.4

28/42

Why does residual fitting work?

» Typical ML task: find H(x) to minimize loss L(y, H(x)).
Generally unfeasible. Let's try a stagewise additive approach.

v

v

Start with some simple H(x) = hg(x) (e.g. regression stump).

v

Add hy(x) to minimize resulting loss:

hi(x) = argmin L[y, H(x) + h(x)]
h(x)

v

Gradient tells us where to go! ldeally,

g(x) £ [mg;; h)} -

hi(x) = —g(x) (optimal direction)

ap = argmin L[y, H(x) + ahi(x)] (optimal step size)

29/42

» But loss is evaluated on {y;,x;}; and setting
hi1(x;) = —g(x;) simultaneously for each i
is too hard (and would amount to overfitting, anyway)
> Approximate solution: try to fit the negative gradient

N

train h1(x) to minimize Z [—g(x;) — h ()]
i=1

i.e. do a regression with negative gradient as target.

» For our sinusoidal regression toy example
1 2
Ly, HOL = 5 by = H(x)]
—g(x) =y — H(x)

This is why residual fitting works!

30/42

Typical loss functions

» Huber loss is less sensitive to outliers

(y = Hx)?/2, |y—H(x)| <3

””H“”:{MW—HQN—&

Huber loss for regression (6 = 1)

L(y, H(x))
~
o

- —— Huber
0.0 square

-20 -15 -1.0 =05 0.0 0.5 1.0 15 2.0
y—H(x)

» What about classification? Cross-entropy loss.

31/42

Gradient tree boosting

0. Start with Ho(x) = arg min, ZfV:l L(yi, x) = const.

1. For k=1,..., K (until convergence)
a) Compute “pseudo-residuals” rx ; = —g(x;)
b) Fit a regression tree on {x;, r,;}. This partitions input space
into regions Ry 1, ..., Rk,
c) Compute best output for each region
Xk,j = arg min Z L [y, He—1(xi) + X]
X X; € R j
d) Update strong learner
Jk
Hi(x) = Hk—1(x) + Zxk,j]l{x S Rk’j}
j=1

2. Output Hk(x) as final model.

32/42

Gradient tree boosting for classification

» Similar as for regression.

» M — 1 trees for M classes, outputting f1.p—1(x)
pm(x) = P(Y = m|x)
fm(x)

= 1"‘2/ L tefit)”
1_21:1 p/()7 m=M

» Cross-entropy (deviance) loss

)
L(y,p(x)) = —Inpy(x)
p(

m(y’()x)) Iy =i} — pi(x)

33/42

Gradient tree boosting hyper-parameters

» Size of trees

» controls amount of interactions between inputs
» ‘“experience indicates 4 < J < 8" [HTFO09]

» Number of iterations K
> large K leads to over-fitting
» chosen through early stopping

» Shrinkage

J
Hk(x) = Hk_l(x) + VZj:l XkJ]l{X S RkJ}

» smaller v = less overfitting, but requires larger K
» set ¥ < 0.1 and choose K via early stopping [Fri01]
» Subsampling (“stochastic gradient boosting")
» sample w/o replacement a fraction of 7 training examples
» grow k-th tree using this sample
» poor performance without shrinkage

34/42

XGBoost

» Fast implementation of gradient boosted trees.

» Reduces search space of possible splits using the distribution
of features across all examples in each leaf.

» Additional regularization—objective in iteration k is

N A Tk Tk
D Llyis Heea(xi) + bic(xi)] + 7 Tie + > dowhita)] lwil
i=1 Jj=1 Jj=1

loss regularization

T« number of leafs in k-th tree
wkj output value (weight) in j-th leaf
» Uses 2nd order Taylor expansion of the objective

» Resources:

» Tiangi Chens paper [CG16] and slides (2014, 2016)
» web xgboost.ai, github repo dmlc/xbgoost

35/42

https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://speakerdeck.com/datasciencela/tianqi-chen-xgboost-overview-and-latest-news-la-meetup-talk
https://xgboost.ai/
https://github.com/dmlc/xgboost

Some success stories

Fruend & Schapire won the 2003 Godel Prize for AdaBoost.

Viola-Jones object detection framework [VJ01]
» 1st framework with competitive detection rates in real-time
» AdaBoost with Haar features

v

v

» Many more successful AdaBoost applications in [FF12]
Yahoo [CZ08], Yandex (slides): gradient boosting for ranking

XGBoost
» Higgs Machine Learning Challenge [CH15]
» “Dominates structured or tabular datasets on classification and
regression predictive modeling” [machinelearningmastery.com]
» List of ML competition winning solutions
» Very popular on Kaggle

v

v

36/42

http://romip.ru/russir2009/slides/yandex/lecture.pdf
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
<https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions>

Implementations

» AdaBoost
> available in C++4, Matlab, Python, R
» see wikipedia entry
» Gradient Boosting
» Python/sklearn
» R (as Generalized Boosting Model)
» XGBoost
» Available for C++, Java, Python, R, Julia on
Windows/Mac/Linux
» Support integration with scikit-learn
» Can be integrated into Spark, Hadoop, Flink
> see wikipedia entry and github repo

37/42

https://en.wikipedia.org/wiki/AdaBoost#Implementations
https://en.wikipedia.org/wiki/Xgboost
https://github.com/dmlc/xgboost

Concluding remarks

» Pros of gradient boosted trees

» naturally handles data of mixed types
can handle missing values
computationally scalable

able to deal with irrelevant inputs
feature importance assessment
interpretability

vV vy vy VvYyy

» Cons w.r.t. deep nets

> lower predictive power
» cannot extract features

When in doubt, use xgboost [Kaggle winner]

38/42

http://blog.kaggle.com/2015/08/26/avito-winners-interview-1st-place-owen-zhang/

References |

[@ Tiangi Chen and Carlos Guestrin.
XBGoost: a scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining, pages
785-794. ACM, 2016.

[@ Tiangi Chen and Tong He.
Higgs boson discovery with boosted trees.
In NIPS 2014 Workshop on High-energy Physics and Machine
Learning, pages 69-80, 2015.

[David Cossock and Tong Zhang.
Statistical analysis of bayes optimal subset ranking.
IEEE Transactions on Information Theory, 54(11):5140-5154,
2008.

39/42

References |l

@ Ayhan Demiriz, Kristin P Bennett, and John Shawe-Taylor.
Linear programming boosting via column generation.
Machine Learning, 46(1-3):225-254, 2002.

[@ Artur Ferreira and Mério Figueiredo.
Boosting algorithms: A review of methods, theory, and
applications.
In Ensemble machine learning, pages 35-85. Springer, 2012.

@ Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
Additive logistic regression: a statistical view of boosting (with
discussion and a rejoinder by the authors).

The annals of statistics, 28(2):337-407, 2000.

[d Yoav Freund.
Boosting a weak learning algorithm by majority.
Information and computation, 121(2):256-285, 1995.

40/42

References 1l

E

Yoav Freund.
An adaptive version of the boost by majority algorithm.
Machine learning, 43(3):293-318, 2001.

Jerome H Friedman.
Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189-1232, 2001.

Yoav Freund and Robert E Schapire.
Experiments with a new boosting algorithm.
In Proceedings of the 13th ICML, pages 148—-156, 1996.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
The elements of statistical learning: data mining, inference,
and prediction.

Springer, 20009.

41/42

References IV

[Michael Kearns and Leslie Valiant.
Cryptographic limitations on learning boolean formulae and
finite automata.
Journal of the ACM (JACM), 41(1):67-95, 1994.

[§ Robert E Schapire.
The strength of weak learnability.
Machine learning, 5(2):197-227, 1990.

[@ Paul Viola and Michael Jones.
Rapid object detection using a boosted cascade of simple
features.
In Computer Vision and Pattern Recognition (CVPR), 2001.
Proceedings of the 2001 IEEE Computer Society Conference
on, volume 1, pages I-l. I[EEE, 2001.

42/42

	Terminology
	History
	AdaBoost
	Variants of AdaBoost
	Gradient Boosting
	Concluding remarks

