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Ensemble (committee)

[dataversioncontrol.com]
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https://blog.dataversioncontrol.com/ml-model-ensembling-with-fast-iterations-91e8cad6a9b5


Bootstraping

I Sampling N out of N with replacement, M times.

I 30% of examples are not chosen in each sample.

[hackernoon.com]
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https://hackernoon.com/how-to-develop-a-robust-algorithm-c38e08f32201


Weak learner, strong learner

Weak learner simple classifier, slightly better than guessing

Strong learner can achieve arbitrary accuracy with enough data

[Kidsday staff artist / Maggie Flaherty, Merrick]

5/42



Weak learner, strong learner
In the PAC framework

I Notation
{xi , yi}Ni=1 training set

P distribution of training set
f (x) = y true hypothesis
h(x) = ŷ learned hypothesis

PrP [h(x) 6= f (x)] generalization error

I Strong learner (SL)
I for any P, f , δ, ε ≥ 0
I for large enough N
I outputs a classifier with PrP [h(x) 6= f (x)] ≤ ε
I with probability at least 1− δ

I Weak learner (WL)
I for any P, f , δ and some 0 ≤ ε < 1/2
I for large enough N
I outputs a classifier with PrP [h(x) 6= f (x)] ≤ ε
I with probability at least 1− δ
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Bagging & Boosting: training

[quantdare.com]
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https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/


Bagging & Boosting: decision

[quantdare.com]
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https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/


History

1989 Does weak learnability imply strong learnability [KV94]?

1990 3 weak learners on 3 modified distributions [Sch90]

1995 Boosting by majority [Fre95]

1996 AdaBoost [FS96]

2001 Gradient Boosting [Fri01]

2016 XGBoost [CG16]
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First boosting algorithm [Sch90]

I Requires a continuous stream of labeled data.

I Learns 3 hypothesis on 3 modified distributions.

I Outputs their majority vote.
I Algorithm:

1. Randomly choose first first N samples.
Use them to learn h1.

2. Choose next batch so that N/2 samples are misclassified by h1.
Use it to learn h2.

3. Choose next batch of N samples so that h1 and h2 disagree.
Use it to learn h3.

4. Apply recursively.
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AdaBoost

[sebastianraschka.com]
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https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html


AdaBoost
Preliminaries

hl(x) l-th WL, hl(x) = ±1 (e.g. stump or perceptron)
αl voting weight of l-th WL

ωl ,i weight of i-th example in l-th iteration,
∑N

i=1 ωl ,i = 1

I Hypothesis (strong learner) after k iterations

Hk(x) =
1

2

∑k

l=1
αlhl(x)

I In iteration k , min exponential loss w.r.t. αk and hk(x) only

Ek =
∑N

i=1
exp [−yiHk(xi )]

=
∑N

i=1
exp [−yiHk−1(xi )]︸ ︷︷ ︸

ωk,i

exp

[
−1

2
yiαkhk(xi )

]
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AdaBoost
Training

I Initialization: ω1,1 = · · · = ω1,N = 1/N
I For k = 1, . . . ,K (until convergence)

1. Train weak learner

choose hk to minimize Jk =
∑N

i=1
ωk,i1{hk(xi ) 6= yi}

2. Compute its voting weight

εk =
∑N

i=1
ωk,i1 {hk(xi ) 6= yi} (weighted error)

αk = ln
1− εk
εk

(voting weight)

3. Update sample weights for next iteration

ωk+1,i ∝ ωk,ie
αk1{hk (xi ) 6=yi},

∑N

i=1
ωk+1,i = 1

13/42



AdaBoost
Convergence

I Loss is an upper limit on training error

ε̂k ,
1

N

N∑
i=1

1 {Hk (xi ) yi < 0} ≤ Ek

N

I If weighted error is ≤ 1
2 − δ for each WL

Ek ≤
√

1− 4δ2Ek−1 ≤
(
1− 4δ2

)k/2
N (E0 ≤ N)

I Both the loss and the training error are always decreasing!

I Zero training error after finite number of iterations

ε̂k = 0 for k ≥ −2
lnN

ln(1− 4δ2)
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AdaBoost
Convergence 10.5 Why Exponential Loss? 345
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FIGURE 10.3. Simulated data, boosting with stumps: misclassification error
rate on the training set, and average exponential loss: (1/N)

PN
i=1 exp(−yif(xi)).

After about 250 iterations, the misclassification error is zero, while the exponential
loss continues to decrease.

10.5 Why Exponential Loss?

The AdaBoost.M1 algorithm was originally motivated from a very differ-
ent perspective than presented in the previous section. Its equivalence to
forward stagewise additive modeling based on exponential loss was only
discovered five years after its inception. By studying the properties of the
exponential loss criterion, one can gain insight into the procedure and dis-
cover ways it might be improved.

The principal attraction of exponential loss in the context of additive
modeling is computational; it leads to the simple modular reweighting Ad-
aBoost algorithm. However, it is of interest to inquire about its statistical
properties. What does it estimate and how well is it being estimated? The
first question is answered by seeking its population minimizer.

It is easy to show (Friedman et al., 2000) that

f∗(x) = argmin
f(x)

EY |x(e
−Y f(x)) =

1

2
log

Pr(Y = 1|x)
Pr(Y = −1|x) , (10.16)

[HTF09]
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AdaBoost I
Margins & Overfitting

I Margin in boosting iteration k for example i

γk,i , yiHk (xi )

I Assume zero training error: γk,i > 0, ∀i
I Exponential loss Ek =

∑N
i=1 e

−γk,i can still be reduced!

I Loss reduces more sharply for examples with smaller γk,i
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AdaBoost II
Margins & Overfitting

I AdaBoost tends to increase worst-case margin mini γk,i
I How does AdaBoost avoid overfitting?

I Stagewise addition of new learners makes learning slow
I Impact of change is localized as iterations procees
I Worst-case margin is pushed up (?)
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AdaBoost
Why exponential loss?

I Expected exponential loss is minimized for

H∗(x) = arg min
H(x)

EY | x e
−YH(x)

I For binary classification with Y = ±1

EY | x e
−YH(x) = Pr(Y = 1 | x)e−H(x) + Pr(Y = −1 | x)eH(x)

I Differentiating w.r.t H(x) and setting to zero gives

H∗(x) =
1

2
ln

Pr(Y = 1 | x)

Pr(Y = −1 | x)
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I Now, assume Y ∼ Bernoulli(φ(x)) with

φ(x) =
1

1 + e−H(x)

I Negative log-likelihood loss is given by

−l (H(x)) = − ln
(

1 + e−YH(x)
)

I Population minimizer is the same as for exponential loss

arg min
H(x)

EY | x e
−YH(x) = arg max

H(x)
EY | x l (H(x))

I Equivalence does not hold for finite data sets!
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Loss functions for 1 example
Exponential
Log-likelihood

I Exponential loss puts more emphasis on misclassified examples
I Log-likelihood loss is more robust if

I Bayes error rate is high
I there are mislabeled data
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Real AdaBoost [FHT00]
I Initialization: ω

(1)
1 = · · · = ω

(N)
1 = 1/N

I For k = 1, . . . ,K (until convergence)
1. Fit classifier to target

pk(x) = P̂ω(Y = 1 | x)

2. k-th weak learner outputs

hk(x) =
1

2
ln

pk(x)

1− pk(x)

3. Update and re-normalize the weights

ωk+1,i ∝ ωk,i exp [−yihk(xi )] ,
∑N

i=1
ωk+1,i = 1

I Ensemble output is

HK (x) = sign

(∑K

k=1
hk(x)

)
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LogitBoost [FHT00]

I Additive logistic regression models.

I Newton optimization of the Bernoulli log-likelihood.

I Start with H(x) = 0, ω1:N = 1/N and p(xi ) = 1/2

I At iteration k, compute the weights and “working responses”

ωi = p(xi ) (1− p(xi )) , zi = min

{
1{yi = 1} − p(xi )

ωi
, zmax

}
I Find hk(x) via weighted least-squares

hk(x) = arg min
h(x)

∑N

i=1
ωi [zi − h(xi )]2

I Update strong learner and probabilities

H(x)← H(x) +
1

2
hk(x), p(x)← eH(x)

e−H(x) + eH(x)
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Other AdaBoost modifications

I Gentle AdaBoost [FHT00]
I Real AdaBoost + Newton steps
I weighted least-squares regression instead of Pr estimates
I more stable: no computation of log-ratios

I LPBoost [DBST02]
I maximizes margin between classes
I learning is formulated as a linear programming problem
I totally corrective: weights of all past WLs are updated

I Brown Boost [Fre01]
I “gives up” on repeatedly misclassified examples
I robust to misslabeled datasets

I Many many more [FF12]
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Gradient Boosting I
Toy example: sinusoidal regression
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Regression training set

24/42



Gradient Boosting II
Toy example: sinusoidal regression
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Gradient Boosting III
Toy example: sinusoidal regression
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h1(x) fits the residuals r = y h0(x) of the 1st stump
h1(x)
r
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Gradient Boosting IV
Toy example: sinusoidal regression
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Gradient Boosting V
Toy example: sinusoidal regression
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Why does residual fitting work?

I Typical ML task: find H(x) to minimize loss L(y ,H(x)).

I Generally unfeasible. Let’s try a stagewise additive approach.

I Start with some simple H(x) = h0(x) (e.g. regression stump).

I Add h1(x) to minimize resulting loss:

h∗1(x) = arg min
h(x)

L [y ,H(x) + h(x)]

I Gradient tells us where to go! Ideally,

g(x) ,

[
∂L(y , h)

∂h

]
h=H(x)

h1(x) = −g(x) (optimal direction)

α1 = arg min
α

L [y ,H(x) + αh1(x)] (optimal step size)
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I But loss is evaluated on {yi , xi}Ni=1 and setting

h1(xi ) = −g(xi ) simultaneously for each i

is too hard (and would amount to overfitting, anyway)

I Approximate solution: try to fit the negative gradient

train h1(x) to minimize
N∑
i=1

[−g(xi )− h1(xi )]2

i.e. do a regression with negative gradient as target.

I For our sinusoidal regression toy example

L [y ,H(x)] =
1

2
[y − H(x)]2

−g(x) = y − H(x)

This is why residual fitting works!
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Typical loss functions

I Huber loss is less sensitive to outliers

L [y ,H(x)] =

{
(y − H(x))2 /2, |y − H(x)| ≤ δ
δ (|y − H(x)| − δ)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
y H(x)

0.0
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2.0
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3.0

3.5

4.0
L(

y,
 H

(x
))

Huber loss for regression ( = 1)

Huber
square

I What about classification? Cross-entropy loss.
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Gradient tree boosting

0. Start with H0(x) = arg minχ
∑N

i=1 L(yi , χ) = const.

1. For k = 1, . . . ,K (until convergence)

a) Compute “pseudo-residuals” rk,i = −g(xi )
b) Fit a regression tree on {xi , rk,i}. This partitions input space

into regions Rk,1, . . . , Rk,Jk

c) Compute best output for each region

χk,j = arg min
χ

∑
xi∈Rk,j

L [yi ,Hk−1(xi ) + χ]

d) Update strong learner

Hk(x) = Hk−1(x) +

Jk∑
j=1

χk,j1{x ∈ Rk,j}

2. Output HK (x) as final model.
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Gradient tree boosting for classification

I Similar as for regression.

I M − 1 trees for M classes, outputting f1:M−1(x)

pm(x) = P̂(Y = m | x)

=


efm(x)

1 +
∑M−1

l=1 efl (x)
, m = 1, . . . ,M − 1

1−∑M−1
l=1 pl(x), m = M

I Cross-entropy (deviance) loss

L(y ,p(x)) = − ln py (x)

−∂L(y ,p(x))

∂fi (x)
= 1{y = i} − pi (x)
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Gradient tree boosting hyper-parameters
I Size of trees

I controls amount of interactions between inputs
I “experience indicates 4 ≤ J ≤ 8” [HTF09]

I Number of iterations K
I large K leads to over-fitting
I chosen through early stopping

I Shrinkage

Hk(x) = Hk−1(x) + ν
∑J

j=1
χk,j1{x ∈ Rk,j}

I smaller ν = less overfitting, but requires larger K
I set ν < 0.1 and choose K via early stopping [Fri01]

I Subsampling (“stochastic gradient boosting”)
I sample w/o replacement a fraction of η training examples
I grow k-th tree using this sample
I poor performance without shrinkage
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XGBoost

I Fast implementation of gradient boosted trees.

I Reduces search space of possible splits using the distribution
of features across all examples in each leaf.

I Additional regularization—objective in iteration k is

N∑
i=1

L [yi ,Hk−1(xi ) + hk(xi )]︸ ︷︷ ︸
loss

+ γTk +
λ

2

Tk∑
j=1

ω2
k,j + α

Tk∑
j=1

|ωk,j |︸ ︷︷ ︸
regularization

Tk number of leafs in k-th tree
ωk,j output value (weight) in j-th leaf

I Uses 2nd order Taylor expansion of the objective
I Resources:

I Tianqi Chens paper [CG16] and slides (2014, 2016)
I web xgboost.ai, github repo dmlc/xbgoost
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https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://speakerdeck.com/datasciencela/tianqi-chen-xgboost-overview-and-latest-news-la-meetup-talk
https://xgboost.ai/
https://github.com/dmlc/xgboost


Some success stories

I Fruend & Schapire won the 2003 Gödel Prize for AdaBoost.
I Viola-Jones object detection framework [VJ01]

I 1st framework with competitive detection rates in real-time
I AdaBoost with Haar features

I Many more successful AdaBoost applications in [FF12]

I Yahoo [CZ08], Yandex (slides): gradient boosting for ranking
I XGBoost

I Higgs Machine Learning Challenge [CH15]
I “Dominates structured or tabular datasets on classification and

regression predictive modeling” [machinelearningmastery.com]
I List of ML competition winning solutions
I Very popular on Kaggle
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http://romip.ru/russir2009/slides/yandex/lecture.pdf
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
<https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions>


Implementations

I AdaBoost
I available in C++, Matlab, Python, R
I see wikipedia entry

I Gradient Boosting
I Python/sklearn
I R (as Generalized Boosting Model)

I XGBoost
I Available for C++, Java, Python, R, Julia on

Windows/Mac/Linux
I Support integration with scikit-learn
I Can be integrated into Spark, Hadoop, Flink
I see wikipedia entry and github repo
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https://en.wikipedia.org/wiki/AdaBoost#Implementations
https://en.wikipedia.org/wiki/Xgboost
https://github.com/dmlc/xgboost


Concluding remarks

I Pros of gradient boosted trees
I naturally handles data of mixed types
I can handle missing values
I computationally scalable
I able to deal with irrelevant inputs
I feature importance assessment
I interpretability

I Cons w.r.t. deep nets
I lower predictive power
I cannot extract features

When in doubt, use xgboost [Kaggle winner]
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http://blog.kaggle.com/2015/08/26/avito-winners-interview-1st-place-owen-zhang/
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