
Reinforcement learning
(solving unknown MDPs)

Predrag Vasilić

• We are still considering a Markov decision process (MDP)

• What if transitions 𝑃𝑠𝑎 𝑠′ and rewards 𝑅(𝑠) (or 𝑅(𝑠, 𝑎, 𝑠′)) are
unknown?

• We still want to learn the optimal policy!!!

• We need to learn online!

Offline solution
(MDP)

Online learning
(RL)

Picture taken from [3]

Online learning

• Agent learns from success and failure, from reward and punishment

• 𝑃𝑠𝑎 𝑠′ unknown – we don’t know the results of our actions

• R(s) unknown until we reach s

Picture taken from [3]

How to learn?

• We need to explore the problem

• With time, we start to exploit actions from our experience

• Compromise

• Regret is inevitable – we will certainly make errors

Picture taken from [3]

Model based learning

• We start by choosing actions randomly

• How can we estimate transitions?

 𝑃𝑠𝑎 𝑠′ = 𝑃(𝑠′|𝑠, 𝑎) =
#𝑖𝑛 𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑎 𝑎𝑛𝑑 𝑔𝑜𝑡 𝑡𝑜 𝑠′

#𝑖𝑛 𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑎

• If we have never chosen 𝑎 in 𝑠, we can use 𝑃𝑠𝑎 𝑠′ =
1

𝑁𝑠

Policy iteration with learning

• Initialize 𝜋 randomly

• Repeat {
• (a) Execute 𝜋 in the MDP for some number of trials

• (b) Using the accumulated experience in the MDP, update our estimates for
 𝑃𝑠𝑎 𝑠′

• (c) Estimate 𝑉 𝜋

• (d) Update 𝜋 to be the greedy policy with respect to 𝑉 𝜋

}

Model free learning

• Is it necessary to learn the transition model (𝑃𝑠𝑎 𝑠′) ?

• Example: average age of MLA participant

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Example taken from [3] Example taken from [3]

Direct utility estimation

• We have a fixed policy 𝜋 !!!

• This is called Passive learning

• DUE:
• Whenever you are in 𝑠, remember the final the total reward:

𝑉 𝑖 𝑠 = 𝑅 𝑠 + 𝛾𝑅 𝑠1
𝑖

+ 𝛾2𝑅 𝑠2
𝑖

+⋯

• We get 𝑉𝜋 𝑠 by averaging over 𝑉 𝑖 𝑠 :

 𝑉𝜋 𝑠 =
1

𝑁

𝑖=1

𝑁

𝑉(𝑖) 𝑠

Direct utility estimation

• It misses important information: utilities of states are not independent

• Some state is likely to have high utility, if it’s neighbors have high utilities!

𝑉𝜋 𝑠 = 𝑅 𝑠 + 𝛾

𝑠′

𝑃𝑠𝜋(𝑠)(𝑠
′)𝑉𝜋 𝑠′

Picture taken from [3]

Idea - average over samples:

𝑣(𝑖)(𝑠) = 𝑅 𝑠 + 𝛾 𝑉𝜋 𝑠′(𝑖)

Temporal-difference learning(TD)

• We keep the current estimation of 𝑉𝜋 𝑠

• Whenever we end up in 𝑠, we compute:
𝑣 𝑠 = 𝑅 𝑠 + 𝛾 𝑉𝜋 𝑠′

• We apply the update to 𝑉𝜋 𝑠 :
 𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 + 𝛼 𝑣 𝑠 − 𝑉𝜋 𝑠 , 𝛼 ∈ 0,1

• Mean of 𝑉𝜋 𝑠 converges to 𝑉𝜋 𝑠

Temporal-difference learning

• 𝑉𝜋 𝑠 = (1 − 𝛼) 𝑉𝜋 𝑠 + 𝛼𝑣(𝑠)

• Exponential moving average

• The running interpolation update:

• Makes recent samples more important:

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (𝛼) can give converging averages

Slide taken from [3]

Active Reinforcement Learning

• So far, we used TD to learn utilities for a fixed policy 𝜋

• We now want to learn the optimal policy 𝜋 ∗

Picture taken from [3]

Q-values

• 𝑄(𝑠, 𝑎)(Q-value) : The total expected reward if we apply action 𝑎 in
state 𝑠, and from there we act optimally

𝑄∗(𝑠, 𝑎) = 𝑅 𝑠 + 𝛾

𝑠′

𝑃𝑠𝑎 𝑠′ 𝑉∗(𝑠′)

• 𝑉∗ 𝑠 = max
𝑎

𝑄∗(𝑠, 𝑎)

• 𝜋∗ 𝑠 = argmax
𝑎

𝑄∗(𝑠, 𝑎)

• 𝑄∗(𝑠, 𝑎) = 𝑅 𝑠 + 𝛾 𝑠′ 𝑃𝑠𝑎 𝑠′ max
𝑎′

𝑄∗(𝑠′, 𝑎′)

𝑉∗ 𝑠 = 𝑅 𝑠 + 𝛾 max
𝑎

𝑠′

𝑃𝑠𝑎 𝑠′ 𝑉∗(𝑠′)

Q–value iteration

• Analog with Value iteration

• MDP model is known

• Algorithm:
• Start with 𝑄0 𝑠, 𝑎 = 0 for each 𝑠, a

• For 𝑡 = 1, 2,… until convergence

𝑄𝑡 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾

𝑠′

𝑃𝑠𝑎 𝑠′ max
𝑎′

𝑄𝑡−1 𝑠′, 𝑎′ , ∀ 𝑠, 𝑎

• 𝑄𝑡 converges to 𝑄∗

• We can compute 𝜋∗ and 𝑉∗

𝑉𝑡(𝑠) = 𝑅 𝑠 + 𝛾max
𝑎

𝑠′

𝑃𝑠𝑎 𝑠′ 𝑉𝑡−1(𝑠
′)

Q-learning

• For unknown models - TD with Q-values

• Q-learning algorithm:
 Receive a new sample (𝑠, a, 𝑠′)

 Consider your old estimate: 𝑄(𝑠, 𝑎)

 Compute the new sample estimate:
𝑞(𝑠, 𝑎) = 𝑅 𝑠 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′)

 Update the Q-value with running average:
𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 [𝑞 𝑠, 𝑎 − 𝑄(𝑠, 𝑎)]

• Q-learning converges to 𝑄∗, if we explore enough !!!

Exploration vs. Exploitation

Picture taken from [3]

How to explore?

• How to choose actions in states?

• 𝜀-greedy exploration:
 With probability 𝜀, we choose actions randomly

 Otherwise, we use our current policy estimation (argmax
𝑎

𝑄(𝑠, 𝑎))

• Start with high value of 𝜀 and decrease it with time

How to explore?

• Exploration function

• 𝑁(𝑠′, 𝑎′) is the number of times we have selected action 𝑎′ in state
𝑠′, and we define:

𝑓 𝑠′, 𝑎′ = 𝑄 𝑠′, 𝑎′ +
𝑘

𝑁(𝑠′, 𝑎′)

• Sample for Q-learning is now:
𝑞(𝑠, 𝑎) = 𝑅 𝑠 + 𝛾max

𝑎′
𝑓 𝑠′, 𝑎′

Discretization

• Methods defined so far supposed discrete states

• If states are continuous-we can discretize them

• Problem – curse of dimensionality

• Works for states with small dimensionality(not grater than 5)

Example: Cart-Pole (Inverted pendulum)

• Library: https://github.com/openai/gym (OpenAI Gym)

• Simulator: “CartPole-v1”

• State variables:
• 𝑥 ∈ −2.4, 2.4 – position

• 𝑥 ∈ −∞,∞ − velocity

• 𝜃 ∈ −12°, 12° −angular distance from the vertical position

• 𝜃 ∈ −∞,∞ − angular velocity

• If any variable goes out of range, the episode ends

• If the variables are in their range for 500 steps (T=0.02s), the episode ends

• Two available actions on each step: apply force to the left or right

• Each step has a living reward of +1, so do the terminal states

https://github.com/openai/gym

Example: Cart-Pole (Inverted pendulum)

• Can we apply temporal difference Q-learning?

• We could discretize the state space:
• 𝑥: −∞, 0.8 , −0.8, 0.8 , 0.8,∞

• 𝑥: −∞, 0.5 , −0.5, 0.5 , 0.5,∞

• 𝜃: −∞,−8 °, −8,−4 °, −4, 0 °, 0, 4 °, 4, 8 °, 8, ∞ °

• 𝜃: −∞,−30 °/𝑠, −30,−15 °, −15, 0 °, 0, 15 °, 15, 30 °, 30, ∞ °

• Problem – curse of dimensionality

• Usually works for states with small dimensionality(some authors say
to use it with ≤ 5 dimensions)

Example: Cart-Pole (Inverted pendulum)

• Adaptive exploration rate 𝜀

• Adaptive learning rate 𝛼

Example: Cart-Pole (Inverted pendulum)

Reward averaged over 100 episodes Reward

Example: Cart-Pole (Inverted pendulum)

Approximate Q-learning

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about every single
state!

• Instead, we want to generalize

Parts taken from [3]

Example - Pacman
Let’s say we discover
through experience

that this state is bad:

In naive q-learning,
we know nothing
about this state:

Or even this one!

Slide taken from [3]

Feature-Based Representations

• Describe a state using a vector of features (properties)

• Features are functions from states to real numbers (often 0/1) that capture
important properties of the state

• Example features:
• 1/Distance to closest ghost
• 1/Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

Slide taken from [3]

Aproximate Q-learning

• We approximate Q-value with a linear function of features:
𝑄 𝑠, 𝑎 = 𝜃1𝜙1 𝑠, 𝑎 + 𝜃2𝜙2 𝑠, 𝑎 + ⋯+𝜃𝑛 𝜙𝑛 𝑠, 𝑎 = 𝜽𝑇𝝓 𝑠, 𝑎

• Aproximate Q-learning algorithm:
 Initialize 𝜽=0

Repeat{
 Receive a new sample (𝑠, a, 𝑠′)

 Compute the new sample estimate:
𝑞(𝑠, 𝑎) = 𝑅 𝑠 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′)

 Update the weights:
𝜃𝑗 = 𝜃𝑗 + 𝛼 𝑞 𝑠, 𝑎 − 𝑄 𝑠, 𝑎 𝜙𝑗 𝑠, 𝑎 , 𝑗 = 1,2, … , 𝑛

}
 𝜋∗ 𝑠 = argmax

𝑎
𝑄(𝑠, 𝑎) = argmax

𝑎
𝜽𝑇𝝓(𝑠, 𝑎)

Example - Pacman

• Fetures for example:
 1/′𝑐𝑙𝑜𝑠𝑒𝑠𝑡 − 𝑓𝑜𝑜𝑑′

 ′# − 𝑜𝑓 − 𝑔ℎ𝑜𝑠𝑡𝑠 − 1 − 𝑠𝑡𝑒𝑝 − 𝑎𝑤𝑎𝑦′

 ′𝑒𝑎𝑡𝑠 − 𝑓𝑜𝑜𝑑′

 ′𝑏𝑖𝑎𝑠′

 1/ ′𝑐𝑙𝑜𝑠𝑒𝑠𝑡 − 𝑠𝑐𝑎𝑟𝑒𝑑 − 𝑔ℎ𝑜𝑠𝑡′

 1/′𝑐𝑙𝑜𝑠𝑒𝑠𝑡 − 𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑔ℎ𝑜𝑠𝑡′

Example-Pacman – first four features training

Example-Pacman – all six features after training

Questions?

References

• [1] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach 3rd edition, Prentice Hall, 2009.

• [2] Andrew Ng, John Duchi, "Machine Learning - Lecture notes“

• [3] UC Berkeley: CS188 Intro to AI, lecture slides
http://ai.berkeley.edu (last visited: 11.03.2018)

• [4]Faculty of Electrical Engineering, University of Belgrade: Statistička
klasifikacija signala, materials from class,
http://automatika.etf.bg.ac.rs/sr/13m051sks (last visited: 11.03.2018)

http://ai.berkeley.edu/
http://automatika.etf.bg.ac.rs/sr/13m051sks

THANK YOU

