MACHINE LEARNING AND
APPLICATIONS GROUP

Reinforcement learning
(solving unknown MDPs)

Predrag Vasili¢

* We are still considering a Markov decision process (MDP)

* What if transitions P,,(s’) and rewards R(s) (or R(s,a,s")) are
unknown?

* We still want to learn the optimal policy!!!
* We need to learn online!

-

J
$
O

Offline solution Online learning
(MDP) (RL)

Picture taken from [3]

Online learning

* Agent learns from success and failure, from reward and punishment
* P.,(s") unknown — we don’t know the results of our actions

* R(s) unknown until we reach s

Picture taken from [3]

How to learn?

* We need to explore the problem
e With time, we start to exploit actions from our experience

* Compromise
* Regret is inevitable — we will certainly make errors

Picture taken from [3]

Model based learning

* We start by choosing actions randomly
* How can we estimate transitions?

__ . #in s applied a and got to s’
Pio(s’) = P(s'|s,a) =

#in s applied a

. _— 1
* If we have never chosen a in s, we can use P,,(s') = ~—

S

Policy iteration with learning

* Initialize T randomly

* Repeat {
* (a) Execute m in the MDP for some number of trials
. (b)/L\Jsing the accumulated experience in the MDP, update our estimates for
Psa(s")
* (c) Estimate V"
* (d) Update 7 to be the greedy policy with respectto V "

}

Model free learning

* Is it necessary to learn the transition model (P,,(s')) ?
 Example: average age of MLA participant

Unknown P(A): “Model Based” Unknown P(A): “Model Free”
- num(a)
P(a) = 1
N EA] ~ Z a;

EA] ~ Zp(a) - a

Example taken from [3] Example taken from [3]

Direct utility estimation

* We have a fixed policy !!!
* This is called Passive learning
* DUE:

* Whenever you are in s, remember the final the total reward:
V() =R(s) + yR (51(1)) +y2R (Sz(l)) +
e We get V™(s) by averaging over V © (s):

Pr(s) =2y VO ()
=1

Direct utility estimation

* It misses important information: utilities of states are not independent

e Some state is likely to have high utility, if it’s neighbors have high utilities!

N
:

0.74 »
V() = R(S) +) Pone (sIV(5")

Idea - average over samples:
vD(s) = R(s) +yV™(s'D)

Picture taken from [3]

<« 0.28

Temporal-difference learning(TD)

* We keep the current estimation of V'™ (s)

* Whenever we end up in s, we compute:
v(s) = R(s) + yV™(s')
* We apply the update to V7 (s):
VT (s) « V™(s) + a[v(s) — 17”(5)], a € (0,1)

« Mean of V™ (s) converges to V(s)

Temporal-difference learning

e V7(s) = (1 — a)V™(s) + av(s)
* Exponential moving average
* The running interpolation update: =z, = (1 — Cl:’) cTp—1+ Ty

* Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zpo+...
I+(1-a)+(1—-a)2+...

Ly =

* Forgets about the past (distant past values were wrong anyway)

* Decreasing learning rate (a) can give converging averages

Slide taken from [3]

Active Reinforcement Learning

* So far, we used TD to learn utilities for a fixed policy
* We now want to learn the optimal policy T *

Picture taken from [3]

Q-values

* Q(s,a)(Q-value) : The total expected reward if we apply action a in
state s, and from there we act optimally

0'(5,@) =R() +7) Pua(sIV'(5')

o /¥ (S) = IMdax Q* (S, a) V*(s) = R(s) +ymaxz P, (s V*(s")
a =

e 1*(s) = argmax Q" (s, a)

*Q7(s,a) = R(s) +v Xy Fea(s") max Q™ (s”, a’)

Q—value iteration

Ve(s) = R(s) +ymax } Pig(s) Ve (")

* Analog with Value iteration

e MDP model is known

* Algorithm:
e Start with Q,(s,a) = 0 for each s,a
e Fort = 1,2, ... until convergence

Q:(s,a) = R(s) + VZ: Pa(s)) max Q-4 (s’,a’), Vs,a

* (), converges to Q°
* We can compute ™ and VV'”

Q-learning

 For unknown models - TD with Q-values

* Q-learning algorithm:
» Receive a new sample (s,a,s")
= Consider your old estimate: Q(s, a)
= Compute the new sample estimate:
q(s,a) = R(s) +ymaxQ(s’,a’)

= Update the Q-value with running average:

Q(s,a) = Q(s,a) + a [q(s,a) — Q(s,a)]

* Q-learning converges to Q7, if we explore enough !!!

Exploration vs. Exploitation

Picture taken from [3]

How to explore?

* How to choose actions in states?

e e-greedy exploration:
= With probability €, we choose actions randomly

= Otherwise, we use our current policy estimation (argmax Q (s, a))
a

e Start with high value of € and decrease it with time

How to explore?

* Exploration function

* N(s',a") is the number of times we have selected action a’ in state
s’ and we define:

f(s',a') =Q(s'",a’)

e Sample for Q-learning is now:
q(s,a) = R(s) + ymaxf(s’,a’)
a

N k
N(s',a")

Discretization

* Methods defined so far supposed discrete states

* If states are continuous-we can discretize them

* Problem — curse of dimensionality

* Works for states with small dimensionality(not grater than 5)

Example: Cart-Pole (Inverted pendulum)

e Library: https://github.com/openai/gym (OpenAl Gym)

e Simulator: “CartPole-v1”

e State variables:
e« x € [—2.4,2.4] - position

* X € [—o0, 0] — velocity a
e § € [—12°,12°] —angular distance from the vertical position

e § € [—o0,] — angular velocity
* |f any variable goes out of range, the episode ends
* |f the variables are in their range for 500 steps (T=0.02s), the episode ends
* Two available actions on each step: apply force to the left or right

* Each step has a living reward of +1, so do the terminal states

https://github.com/openai/gym

Example: Cart-Pole (Inverted pendulum)

e Can we apply temporal difference Q-learning?

* We could discretize the state space:
e x:[—00,0.8), [—0.8,0.8),[0.8,)
* X: |[—00,0.5), [—0.5,0.5),[0.5,00)
* 9: [—o0,—8)°, [—8,—4)°,[—4,0)°[0,4)° [4,8)°[8,)°
¢ §: [—0,—30)°/s, [-30,—15)° [—15,0)° [0, 15)°[15,30)° [30, ©)°

* Problem — curse of dimensionality

e Usually works for states with small dimensionality(some authors say
to use it with < 5 dimensions)

Example: Cart-Pole (Inverted pendulum)

* Adaptive exploration rate ¢
e Adaptive learning rate a

Epsilon (exploration rate) Alpha (learning rate)

500 ~

400

300 ~

200 ~

100

Example: Cart-Pole (Inverted pendulum)

Reward averaged over 100 episodes

T T T T
50 100 150 200
Episodes

T
250

500 A

400 A

300 A

200 ~

100 -

Reward

50

100

150
Episodes

200

250

Example: Cart-Pole (Inverted pendulum

Approximate Q-learning

* Basic Q-Learning keeps a table of all g-values

* In realistic situations, we cannot possibly learn about every single
state!

* Instead, we want to generalize

Parts taken from [3]

Example - Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Slide taken from [3]

Feature-Based Representations

* Describe a state using a vector of features (properties)

* Features are functions from states to real numbers (often 0/1) that capture
important properties of the state

* Example features:
» 1/Distance to closest ghost
» 1/Distance to closest dot
* Number of ghosts
e 1/ (dist to dot)?
* |s Pacman in a tunnel? (0/1)

e |s it the exact state on this slide?

Slide taken from [3]

Aproximate Q-learning

* We approximate Q-value with a linear function of features:
Q(S, Cl) — 914)1(51 Cl) + 62¢2 (S, Cl) + - +9n d)n(S, Cl) — 9T¢(SJ Cl)

e Aproximate Q-learning algorithm:
" |nitialize 6=0
Repeat{

= Receive a new sample (s,a,s")

= Compute the new sample estimate:
q(s,a) = R(s) + ymaxQ(s’,a")
a

= Update the weights:
0; =0, + alq(s,a) — Q(s,a)|p;(s,a), j=12,..,n

}

= 7%(s) = argmax Q(s,a) = argmax 87 ¢ (s, a)
a a

Example - Pacman

* Fetures for example:
= 1/'closest — food’
= '"# —of — ghosts — 1 — step — away’
= ‘eats — food'
» 'bias’
= 1/ 'closest — scared — ghost’
= 1/'closest — active — ghost’

Example-Pacman — first four features training

(C:\Usersi\korisnik\anaconda3\envs\py27) C:\Users\korisnik\Documents>cd C:\Usersi\korisnik\Google Drive\Sinhronizacija\SKS\ML_seminar\prosac_testove_23_1 2818

(C:\Usersikorisnik\Anaconda3\envsi\py27) C:\Usersikorisnik\Google Drive\Sinhronizacija\SK5\ML_seminar‘\prosao_testove_ 23 1 2818>python pacman.py -p ApproximateQAgent -a ext
Beginning 5 episodes of Training

Pacman died! Score: -172

Pacman died! Score: -387

(C:\Usersikorisnik\Anaconda3\envsipy27) C:\Usersi\korisnik\Google Drive\Sinhronizacija\SKS\ML_seminar‘\prosao_testove 23 1 2818>python pacman.py -p ApproximateQAgent -a ext
Beginning 5 episodes of Training

died! Score: -156

died! Score: -189

emerges victorious! Score: 975

emerges victorious! Score: 978

emerges victorious! Score: 983
Training Done (turning off epsilon and alpha)

("closest-food': -8.88456037864251642, "bias': 47.78197565415671, '#-of-ghosts-1-step-away’: -19.839258573293158, 'eats-food': 68.86789429816786}

(C:\Usersikorisnik\Anaconda3\envsi\py27) C:\Usersikorisnik\Google Drive\Sinhronizacija\SKS5\ML_seminar‘\prosao_testove 23 1 2818>python pacman.py -p ApproximateQAgent -a ext
Beginning 5 episodes of Training
Pacman emerges victorious! Score: 981

(C:\UsersikorisnikM\Anaconda3\envsi\py27) C:\sersikorisnik\Google Drivel\Sinhronizacija\SKS\ML_seminar‘\prosac_testove 23 1 2818>python pacman.py -p ApproximateQAgent -a ext
Beginning 5 episodes of Training

(C:\Usersikorisnik\Anaconda3\envsi\py27) C:\Usersikorisnik\Google Drive\Sinhronizacija\SKS5\ML_seminar‘\prosao_testove 23 1 2818»python pacman.py -p ApproximateQAgent -a ext
Beginning 5 episodes of Training

died! Score: -383

emerges victorious! Score: 982

emerges victorious! Score: 946

died! Score: -256

emerges victorious! Score: 981
Training Done (turning off epsilon and alpha)

("closest-food': -8.46887783994894944, 'bias': 42.48683788913223, "#-of-ghosts-1-step-away': -28.857244137859165, 'eats-food': 63.73668084168507}

C:\Users\korisnik\Anaconda3\envsi\py27) C:\Users\korisnik\Google Drive\Sinhronizacija\SKS5\ML_seminar‘\prosao testove 23 1 2818>python pacman.py -p ApproximateQAgent -a ext

Example-Pacman — all six features after training

eax
Pacman emerges victorious! Score: 983
Pacman died! Score: 124
Pacrnan
SKSAML_seminar‘\prosao_testove_23 1 2818»>cd C:\Users)

SKSAML_seminar\reinforcement_stvarne_distance_obucaw

Beginni
rainin

tive-ghost': -117.7958844508293, 'bias': 215.145228
Pacman
Pacman
Pacman
Pacman
nding

C:\Usg EKSAML_seminar\reinforcement_stvarne_distance_obucaw
Eic
Beginni
RTraceh

File
ruri
File
gan
File arne_distance _obucavanje\game.py”, line 724, in run

FiigE SCORE: 152 arne_distance_obucavanjeh\glearningAgents.py”, line #

Pam;.d:u,_:.a-;-:. L.TLIELY :-:_?J SLdLE)
File "C:\Usersh\korisnik\Google Drive\Sinhronizacija\SKS\ML_seminar\reinforcement_stvarne_distance_obucavanje\learningAgents.py", line 2
print 'Reinforcement Learning Status:'
OError: [Errno 2] No such file or directory

(C:\UsersikorisnikM\Anaconda3ienvsipy27) C:\Usersikorisnik\Google Drive\Sinhronizacija‘\SKS\ML_seminar‘\reinforcement_stvarne_distance_obucav
Eic
Beginning 158 episodes of Training
RTraceback (most recent call last):
File "pacman.py", line 682, in <module>

L

runGames{ **args)

&
File "pacman.py”, line 648, in runGames
game.run{)

0 Calrnelnnimningonalog iniinl pohnoni1ci | ninininninfoncomn Qo dirrncg ohncnandoiam oie 4o

Questions?

References

e [1] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach 3" edition, Prentice Hall, 2009.

* [2] Andrew Ng, John Duchi, "Machine Learning - Lecture notes”

e [3] UC Berkeley: CS188 Intro to Al, lecture slides
nttp://ai.berkeley.edu (last visited: 11.03.2018)

 [4]Faculty of Electrical Engineering, University of Belgrade: Statisticka
clasifikacija signala, materials from class,

nttp://automatika.etf.bg.ac.rs/sr/13m051sks (last visited: 11.03.2018)

http://ai.berkeley.edu/
http://automatika.etf.bg.ac.rs/sr/13m051sks

THANK YOU

