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• Sequence labeling – process of transcribing data 
sequence to sequence of discrete labels

• Applications
o Speech recognition
o Handwriting recognition
o Protein secondary structure prediction

• Sequence labeling vs. pattern classification
o Correlations in input data and output data

Introduction



Pattern classification
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Sequence classification

→    T



Segment classification

• Frame-wise labels
• Context
• Time windows



Temporal classification

• Unsegmented labels

→ Text



Regular vs recurrent network 



How RNNs work?



Unfolding RNN



• Unfolding network along input 
sequence

• No recurrent connections

Unfolding RNN



• MLP maps input vector to output 
vector

• Recurrent connections allow 
‘memory’ of previous inputs

• RNN maps entire history of previous 
inputs to output vector

Recurrent Neural Network (RNN)



• Almost the same as MLP, except 
inputs come from the hidden layer as 
well

•  - input to hidden unit h at time t

•  

Forward pass



• Backpropagation through time (BPTT)

•  

Backward pass



• Context from past and context from future

• In handwriting it is useful to know letters 
before and letters coming after 

Bidirectional network



• Labeling each frame is expensive

• In some cases (e.g. speech recognition), 
you don’t know where one label finishes 
and where the other starts

• Connectionist temporal classification 
(CTC)

Framewise labels



• “Deep speech”

• Bidirectional RNN

• Feature window

• Unaligned data – positions of outputs are 
unknown

• Connectionist temporal classification (CTC)

• Set of novel data synthesis techniques

• Large amount of training data

Speech recognition

http://arxiv.org/pdf/1412.5567.pdf


• Sensitivity decays over time

• New inputs overwrite activations of 
the hidden layer

• Darker the shade, greater the 
sensitivity

RNN problem



• Very difficult to train

• Limited range of context to access

• Vanishing and exploding gradient

• Influence of error from timestamp T+N       
• LSTM – long short term memory

•  

Training RNN



• Sensitivity decays over time

• New inputs overwrite activations of 
the hidden layer

• Darker the shade, greater the 
sensitivity

RNN problem



• Information is preserved as long as input is 
closed and forget gate is opened
o ‘o’ – gate is open
o ‘-’ – gate is closed

Gates 



Hidden units



LSTM cell



• Input gate 

• Forget gate 

• Cell 

•  

LSTM – forward pass 



• Input gate 

• Forget gate 

• Cell 

•  

LSTM – forward pass 
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• Output gate 

• Cell output 

•  

LSTM – forward pass 



• Output gate 

• Cell output 

•  

LSTM – forward pass 
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• Output gate 

• Cell output 

•  

LSTM – forward pass 
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• RNN where neuron units replaced with 
memory blocks

• Blocks consist of memory cells

• Gates
o Read, write, reset signals

LSTM – architecture 



• No vanishing gradient problem

• Exploding gradient is addressed by clipping gradient

• Gradient

• Gradient with momentum  helps escaping local minima

•  

LSTM – training 



• Prevent overfitting training 
data

• Stopping after error fails to 
decrease for certain number 
of epochs

Early stopping



Regularization



• Segmented approach
o Extracting character candidates
o Individual character classification
o Search through list of guesses
o Tesseract

• Unsegmented approach
o Text line normalization
o No language model
o OCRopus

OCR



OCR - training



Arabic OCR



• Target signals
o Background
o Arabic
o Non-Arabic
o Garbage

Arabic script detection



• Target signals
o Background
o Arabic
o Non-Arabic
o Garbage

• Decode output signal

Arabic script detection



• Data consists of stroke intervals (periods 
when the pen was pressed against the 
board) and sequences of x, y coordinates 
and time

• Raw features: [x, y, t]

• Preprocessed features
o Reducing variance (slant, skew, character 

width)
o Online features – position, speed, curvature
o Offline features – sliding window

Online handwriting recognition 



• Character level language model

• Shakespeare
PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never 
fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states..

Language modeling



• Translate English to French

• Encoder decoder architecture

• Data set
o 12M sentences
o 348M French words
o 304M English words

• Training took 10 days on 8 GPUs

Machine translation

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


• Learning general purpose distributed sentenc
e representations via large scale multi-task
 learning

• Multitask learning for sentence 
representations

• Encoder is bidirectional GRU

• Encoder is shared

• Each task has it’s own decoder/classifier 

• Transfer learning

General purpose encoder

https://arxiv.org/pdf/1409.3215.pdf


Visual Recognition and Description

https://arxiv.org/pdf/1804.00079.pdf
https://arxiv.org/pdf/1804.00079.pdf
https://arxiv.org/pdf/1804.00079.pdf


• Supervised Sequence Labeling with Recurrent Neural Networks, Alex Graves

• Neural networks for Machine Learning, Geoffrey Hinton, www.coursera.org

• A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

• High-Performance OCR for Printed English and Fraktur using LSTM Networks

• LSTM tutorial

• OCRopus line recognizer

• Deep Speech: Scaling up end-to-end speech recognition

• Unconstrained handwriting recognition using recurrent neural networks

• Best Practices for Convolutional Neural Networks Applied to Visual Document Analysi
s

• Visual recognition and description 

Literature and useful links



Q/A

Thanks!

http://www.coursera.org/
https://arxiv.org/pdf/1512.05287.pdf
http://staffhome.ecm.uwa.edu.au/~00082689/papers/Breuel-LSTM-OCR-ICDAR13.pdf
http://staffhome.ecm.uwa.edu.au/~00082689/papers/Breuel-LSTM-OCR-ICDAR13.pdf
http://staffhome.ecm.uwa.edu.au/~00082689/papers/Breuel-LSTM-OCR-ICDAR13.pdf
http://lstm.iupr.com/home
https://www.youtube.com/watch?v=czG5Jk9iC7c
https://www.youtube.com/watch?v=czG5Jk9iC7c
http://arxiv.org/pdf/1412.5567.pdf
http://www.cs.toronto.edu/~graves/nips_2007.pdf
http://research.microsoft.com/pubs/68920/icdar03.pdf
http://research.microsoft.com/pubs/68920/icdar03.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
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