Recurrent Neural Networks

Momčilo Vasilijević

MACHINE LEARNING PETNICA SUMMER INSTITUTE

Development Center Serbia

Introduction

- Sequence labeling process of transcribing data sequence to sequence of discrete labels
- Applications
 - \circ Speech recognition
 - Handwriting recognition
 - Protein secondary structure prediction
- Sequence labeling vs. pattern classification
 - Correlations in input data and output data

Pattern classification

Sequence classification

\rightarrow T

Segment classification

- Frame-wise labels
- Context
- Time windows

Temporal classification

• Unsegmented labels

Regular vs recurrent network

How RNNs work?

- Unfolding network along input sequence
- No recurrent connections

Recurrent Neural Network (RNN)

- MLP maps input vector to output vector
- Recurrent connections allow 'memory' of previous inputs
- RNN maps entire history of previous inputs to output vector

Forward pass

- Almost the same as MLP, except inputs come from the hidden layer as well well
 - $\circ a_{h}^{t} = \sum_{i=1}^{I} w_{ih} x_{i}^{t} + \sum_{h'=1}^{H} w_{h'h} b_{h'}^{t-1}$ $\circ b_{h}^{t} = \theta_{h}(a_{h}^{t})$
- a_h^t input to hidden unit h at time t
- b_h^{input} to the hidden weit and the time t

• BackkpppppagtitiothroughtimeikBe(BPTT)

•
$$\delta_h^t = \theta'(a_h^t) \left(\sum_{k=1}^K w_{hk} \delta_k^t + \sum_{h'=1}^H w_{hh'} \delta_{h'}^{t+1} \right)$$

•
$$\frac{\partial L}{\partial w_{ij}} = \sum_{t=1}^{T} \frac{\partial L}{\partial a_j^t} \frac{\partial a_j^t}{\partial w_{ij}} = \sum_{t=1}^{T} \delta_j^t b_i^t$$

Bidirectional network

- Context from past and context from future
- In handwriting it is useful to know letters before and letters coming after

Framewise labels

Output Layer ...

- Labeling each frame is expensive
- In some cases (e.g. speech recognition), you don't know where one label finishes and where the other starts
- Connectionist temporal classification (CTC)

Speech recognition

- <u>"Deep speech"</u>
- Bidirectional RNN
- Feature window
- Unaligned data positions of outputs are unknown
- Connectionist temporal classification (CTC)
- Set of novel data synthesis techniques
- Large amount of training data

RNN problem

- Sensitivity decays over time
- New inputs overwrite activations of the hidden layer
- Darker the shade, greater the sensitivity

Training RNN

- Very difficult to train
- Limited range of context to access •
- Vanishing and exploding gradient Vanishing and exploding gradient
- Influence of error from timestamp T+NInfluence of error f_{n} imestamp N+N $W_2 \delta_h^{t+N}$ $= \delta_h^{t+N} w_2^N \prod_{i=1}^N \theta'(a_h^{t+1})$
- LSTM long short term memory
 LSTM long short term memory

RNN problem

- Sensitivity decays over time
- New inputs overwrite activations of the hidden layer
- Darker the shade, greater the sensitivity

- Information is preserved as long as inpution
 closed and forget gate is opened
 - 'o' gate is open
 - \circ '-' gate is closed

Hidden units

LSTM cell

- Input gate i
 - $\circ a_{l}^{t} = \sum_{i=1}^{l} w_{il} x_{i}^{t} + \sum_{h=1}^{H} w_{hl} b_{h}^{t-1}$ $\circ b_i^t = f(a_i^t)$
- Forget gate ϕ Forget gate $\circ a_{\phi}^{I} = \sum_{i=1}^{I} w_{i\phi} x_{i}^{t} + \sum_{h=1}^{H} w_{h\phi} b_{h}^{t-1}$ $\circ b_{\phi}^t = f(a_{\phi}^t)$
- Cell *c*
- Cell $a_{c}^{t} = \sum_{i=1}^{I} w_{ic} x_{i}^{t} + \sum_{h=1}^{H} w_{hc} b_{h}^{t-1}$ $\circ \quad s_c^t = b_\iota^t g(a_c^t) + b_\phi^t s_c^{t-1}$

- Input gate i
 - $\circ \quad a_{\iota}^{t} = \sum_{i=1}^{I} w_{i\iota} x_{i}^{t} + \sum_{h=1}^{H} w_{h\iota} b_{h}^{t-1}$ $\circ b_{l}^{t} = f(a_{l}^{t})$
- Forget gate ϕ Forget gate $\circ a_{\phi}^{I} = \sum_{i=1}^{I} w_{i\phi} x_{i}^{t} + \sum_{h=1}^{H} w_{h\phi} b_{h}^{t-1}$ $\circ b_{\phi}^t = f(a_{\phi}^t)$
- Cell *c*
- Cell $a_{c}^{t} = \sum_{i=1}^{I} w_{ic} x_{i}^{t} + \sum_{h=1}^{H} w_{hc} b_{h}^{t-1}$ $\circ \quad s_c^t = b_\iota^t g(a_c^t) + b_\phi^t s_c^{t-1}$

- Input gate i
 - $\circ a_{l}^{t} = \sum_{i=1}^{I} w_{il} x_{i}^{t} + \sum_{h=1}^{H} w_{hl} b_{h}^{t-1}$ $\circ b_i^t = f(a_i^t)$
- Forget gate ϕ Forget gate $\circ a_{\phi}^{I} = \sum_{i=1}^{I} w_{i\phi} x_{i}^{t} + \sum_{h=1}^{H} w_{h\phi} b_{h}^{t-1}$ $\circ b_{\phi}^{t} = f(a_{\phi}^{t})$
- Cell *c*
- Cell $a_{c}^{t} = \sum_{i=1}^{I} w_{ic} x_{i}^{t} + \sum_{h=1}^{H} w_{hc} b_{h}^{t-1}$ $\circ \quad s_c^t = b_\iota^t g(a_c^t) + b_\phi^t s_c^{t-1}$

- Input gate i
 - $\circ a_{l}^{t} = \sum_{i=1}^{I} w_{il} x_{i}^{t} + \sum_{h=1}^{H} w_{hl} b_{h}^{t-1}$ $\circ b_i^t = f(a_i^t)$
- Forget gate ϕ Forget gate $\circ a_{\phi}^{I} = \sum_{i=1}^{I} w_{i\phi} x_{i}^{t} + \sum_{h=1}^{H} w_{h\phi} b_{h}^{t-1}$ $\circ b^t_\phi = f(a^t_\phi)$
- Cell *c*
- Cell $a_{c}^{t} = \sum_{i=1}^{I} w_{ic} x_{i}^{t} + \sum_{h=1}^{H} w_{hc} b_{h}^{t-1}$ $\circ \quad s_c^t = b_\iota^t g(a_c^t) + b_\phi^t s_c^{t-1}$

- \mathcal{O}_{H} by a set ω
 - $\begin{array}{l} \circ \quad a^{t}_{\omega} = \sum_{i=1}^{I} w_{i\omega} x^{t}_{i} + \sum_{h=1}^{H} w_{h\omega} b^{t-1}_{h} \\ \circ \quad b^{t}_{\omega} = f(a^{t}_{\omega}) \end{array}$
- Cell output b_c
- Cell output $b_{\omega}^{t} \cdot h(s_{c}^{t})$

- \mathcal{O}_{H} by the formula ω
 - $\circ a^{t}_{\omega} = \sum_{i=1}^{I} w_{i\omega} x^{t}_{i} + \sum_{h=1}^{H} w_{h\omega} b^{t-1}_{h}$ $\circ b^{t}_{\omega} = f(a^{t}_{\omega})$
- Cell output b_c
- Cell output $b_{\omega}^{t} \cdot h(s_{c}^{t})$

- \mathcal{R}_{H} by the state ω
 - $\circ a^{t}_{\omega} = \sum_{i=1}^{I} w_{i\omega} x^{t}_{i} + \sum_{h=1}^{H} w_{h\omega} b^{t-1}_{h}$ $\circ b^{t}_{\omega} = f(a^{t}_{\omega})$
- Cell output b_c
- Cell output $h(s_c^t)$

LSTM – architecture

- RNN where neuron units replaced with memory blocks
- Blocks consist of memory cells
- Gates
 - Read, write, reset signals

- Novanishing gradient problem
- Exploding gradient is addressed by clipping gradient
 Exploding gradient is addressed by clipping gradient
- Gradient

$$\circ \quad \Delta \omega^n = -\alpha \frac{\partial \mathbf{L}}{\partial \omega^n}$$

• Gradient with **momentum** *m* helps escaping local minima Gradient with **momentum** helps escaping local minima

$$\Delta \omega^n = -\alpha \frac{\partial \mathbf{L}}{\partial \omega^n} + m \,\Delta \omega^n$$

Early stopping

- Prevent overfitting training data
- Stopping after error fails to decrease for certain number of epochs

Regularization

OCR

- Segmented approach
 - Extracting character candidates
 - Individual character classification
 - Search through list of guesses
 - Tesseract
- Unsegmented approach
 - Text line normalization
 - No language model
 - OCRopus

Arabic OCR

Arabic script detection

 ${\color{black}\bullet}$

Arabic script detection

- Target signals
 - Background
 - \circ Arabic
 - \circ Non-Arabic
 - \circ Garbage
- Decode output signal

Online handwriting recognition

- Data consists of stroke intervals (periods when the pen was pressed against the board) and sequences of x, y coordinates and time
- Raw features: [x, y, t]
- Preprocessed features
 - Reducing variance (slant, skew, character width)
 - Online features position, speed, curvature
 - Offline features sliding window

Language modeling

- <u>Character level language model</u>
- Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed,

And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states..

Machine translation

MACHINE 2017 LEARNING PETNICA SUMMER INSTITUTE

- <u>Translate English to French</u>
- Encoder decoder architecture
- Data set
 - 12M sentences
 - 348M French words
 - 304M English words
- Training took 10 days on 8 GPUs

General purpose encoder

- Learning general purpose distributed sentenc e representations via large scale multi-task learning
- Multitask learning for sentence representations
- Encoder is bidirectional GRU
- Encoder is shared
- Each task has it's own decoder/classifier
- Transfer learning

Visual Recognition and Description

Literature and useful links

- Supervised Sequence Labeling with Recurrent Neural Networks, Alex Graves
- Neural networks for Machine Learning, Geoffrey Hinton, <u>www.coursera.org</u>
- <u>A Theoretically Grounded Application of Dropout in Recurrent Neural Networks</u>
- <u>High-Performance OCR for Printed English and Fraktur using LSTM Networks</u>
- LSTM tutorial
- OCRopus line recognizer
- <u>Deep Speech: Scaling up end-to-end speech recognition</u>
- <u>Unconstrained handwriting recognition using recurrent neural networks</u>
- <u>Best Practices for Convolutional Neural Networks Applied to Visual Document Analysi</u>
 <u>S</u>
- <u>Visual recognition and description</u>

Q/A

Thanks!