
word2vec
Anđelka Zečević

andjelkaz@matf.bg.ac.rs 



word2vec
Tool for embedded word representation generation according to the results of:    

1) Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient 
Estimation of Word Representations in Vector Space. In Proceedings of 
Workshop at ICLR, 2013. 

2) Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 
Distributed Representations of Words and Phrases and their 
Compositionality. In Proceedings of NIPS, 2013.

https://code.google.com/archive/p/word2vec/

2

http://arxiv.org/pdf/1301.3781.pdf
http://arxiv.org/pdf/1301.3781.pdf
http://arxiv.org/pdf/1310.4546.pdf
http://arxiv.org/pdf/1310.4546.pdf


overview  

● Motivation: 
○ How do we handle semantics? 
○ How can we represent words in order to keep the meaning?

 

● Neural Network Language Model
○ Continuous Bag of Words
○ Skip-gram

 

3



distributed semantics
A bottle of tesgüino is on the table.
Everybody likes tesgüino.
Tesgüino makes you drunk.
We make tesgüino out of corn.

The meaning of a word is related to the distribution of the words around it. 

from Speech and Language Processing by Dan Jurafsky and James H. Martin.
*Tesgüino is a corn beer made by the Tarahumara Indians of Sierra Madre in Mexico.

4

https://en.wikipedia.org/wiki/Maize
https://en.wikipedia.org/wiki/Beer
https://en.wikipedia.org/wiki/Tarahumara
https://en.wikipedia.org/wiki/Sierra_Madre_Occidental
https://en.wikipedia.org/wiki/Mexico


distributed semantics
The hypothesis of linguistics by Firth (1957): 

“We shall know the word by the company it keeps.”

There can be many types of relatedness:

● synonyms: big and large 
● concept categories: dog, cat → animals
● associations: bee & honey
● analogies: big and bigger as small and smaller
● ...

  
5



distributed semantics = vector semantics
Words as one-hot vectors: 

No semantics! 

The size of one-hot vector is equal to the vocabulary size. 

6



distributed semantics = vector semantics
Words as rows of term-document matrix: 

The meaning of the word is represented by documents it tends to occur in.

7



distributed semantics = vector semantics
Words as rows of term-term or word-word or word-context matrix: instead of 
documents we can define smaller contextes  

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of
left context: tablespoonful of

right context: preserve or
context/window size : 2

Shorter windows can capture more syntactic connections between words while larger windows can 
capture more semantic information.  

8



distributed semantics = vector semantics
Modification:

● TF-IDF:
 frequency of the i-th term in the j-th document 
 inverse document frequency of the i-th term

● Positive Pointwise Mutual Information: 

9



distributed semantics = vector semantics
How do we quantify similarity of words? 

Most commonly used metric is cosine: 

Alternatives: 

10



distributed semantics = vector semantics
Still holds:

● the size of word vectors is equal to the vocabulary size
● word vectors are sparse

11



word embedding 
Embedded representations: short dense vectors that keep word semantics

Embedding: the whole process 

Two approaches: 

● count-based methods
● predictive methods

Don't count, predict! by Marco Baroni, Georgiana Dinu and German Kruszewski, ACL 2014.

12



language modeling
Task: Predict a word after the sequence of n words. 
Classical approach: maxim likelihood principle

      maximize probability P(wn|wn-1wn-2 …w1)

2-gram approach: 
 

I feel like a black _____

P(wnwn-1wn-2 …w1) = P(w1)P(w2|w1)P(w3|w2w1)...P(wn|wn-1wn-2 …w1)   

  ~ P(w1)P(w2|w1)P(w3|w2)...P(wn|wn-1)

Issues: out-of-vocabulary words, smoothing 
13



neural network language model
Task: predict wt after a 
sequence of words wt-3 wt-2 wt-1 

Feedforward NN classifier

Input: word indexes
Output: index of the next word

V: vocabulary size
d: embedded word size

14



neural network language model
Network: 

1) transform word wi to one hot representation xi

2) e = (Ex1, Ex2, …, Exk) ← learned embedding matrix
3) h = activation(We + b)
4) z = Uh
5) y = softmax(z)

   softmax calculates probability distribution

Training: backpropagation
Loss: categorical cross entropy 
Optimisation algorithm: stochastic gradient descent 

A Neural Probabilistic Language Model. Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin, JMLR, 2003. 

15



word2vec approach 
● Inspection: most of the complexity comes from the connection of the 

projection layer and the hidden layer as projections are dense 
● feedforward neural networks without hidden layer:

○ input layer
○ projection layer
○ output layer

● increase the amount of training data
● the plan is to use the embedding matrix, not to predict words as it might be 

expected

16



Continuous Bag of Words (CBOW)

Task: 
build a log-linear classifier 
that can correctly classify 
middle word for the given 
context

17



Continuous Bag of Words (CBOW)
● input: context words

○ one-hot representations

● output: hierarchical softmax 
○ vocabulary is presented as Huffman binary tree

● projection layer:
○ it is shared as well as projection matrix - projected

values are averaged
○ the order of words in the history does not influence 

the projection

complexity per training example: N x D + D x log2(V)
N - context size, D - embeddings dimensions, V - vocabulary size

18



hierarchical softmax 
● Softmax: 

● Computation complexity is O(V) ← C=V

● Vocabulary is presented as a Huffman 
binary tree

● Hierarchical Softmax: 
decompose calculating the probability of one word 
into a sequence of probability calculations

● Computational complexity O(log2(V))

19



Continuous skip-gram model
● Task: 

build a log-linear classifier that can correctly 
classify neighbour words for the given center word

● Precisely: 
for the center word and a given new word
network will give us the probability of “a new word 
is a neighbour word” property

20



Continuous skip-gram model
● input: word 

○ one-hot representations

● output: hierarchical softmax 
○ vocabulary is presented as Huffman binary tree

● projection layer: 
○ used for word embeddings 

complexity per training example: C x (D + D x log2(V)
C - maximum distance of the words, D - embeddings dimensions, V - vocabulary size

21



Continuous skip-gram model
This model learn two matrices: embedding matrix and context matrix

For center word wj we compute: 

22



neural network training 
● For every positive sample, 

we use some number of 
“negative” samples: samples
we would like the network to predict
value 0
for example: quick, sheep

● Some recommended values
for the number of negative samples
5 to 20

● “unigram” table with frequencies

23



neural network training
● Backpropagation
● Stochastic gradient descent 

○ start learning rate 0.025 and decrease it lineary

● Large scale parallel training of models is done by distributed framework called 
DistBelief

24



evaluation of word embeddings quality
 Question: 

”What is the word that is similar to X in the same sense as Y is similar to Z?”

Result is obtained by simple algebraic operations: 
vector closest to the vector(Z)−vector(Y) + vector(X)

For example: 
X = small, Y = big, Z = bigger
r = vector(”bigger”)−vector(”big”) + vector(”small”)
search for embedding that is closest (cosine metric) to r gives  “smaller”

25



evaluation of word embeddings quality

● 5 types of 
semantic
questions

●  9 types of 
syntactic 
questions 

In total: 8869 semantic and 10675 syntactic questions
26



evaluation of word embeddings quality
Vectors of various sizes on various dataset are learned and evaluated.

 

27



properties of word embeddings

embedding(‘kings’)-embedding(‘king’)+embedding(‘queen’) → embedding(‘queens’)

28



properties of word embeddings
 Examples of learned relationships:

29



improvements
● phrases are included: 

○ New York, Montreal Canadiens, … 
○ In total: 3 million of new words

● data-driven approach is used for phrases extraction
○ (pab - min_count) / (pa * pb) where pa, pb, and pab are the number of occurrences of words a, b, and their combination

○ min_count is a predefined value used for elimination of very infrequent phrases

● phrases are treated as individual tokens
○ New_York, Montreal_Canadiens, ...

30



improvements
● subsampling of frequent words

○ some words appear more often than other words but do not contribute to semantic
the, a, in, …

○ exclusion of these word will improve the balance of rare and frequent word as well as speed 
up the training (according to results from 2x to 10x) 

● z(wi) is the fraction of total words in the corpus that are wi
for example,  if peanut  occurs 1,000 times in a 1 billion word corpus, then z(‘peanut’) = 1E-6

● The probability of keeping the word wi 

● P(wi) = 1 when z(wi)<=0.0026 → words which represent more than 0.26% of the total 
words will be subsampled.

31



comparison
● The size of embeddings: 300
● NEG-k: negative sampling with k negative samples per positive sample
● NSE: Noise Contrastive Estimation
● HS-Huffman: Hierarchical Softmax

32



Thank you! 

33


