word2vec

Anđelka Zečević

andjelkaz@matf.bg.ac.rs

word2vec

Tool for embedded word representation generation according to the results of:

- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. <u>Efficient</u> <u>Estimation of Word Representations in Vector Space</u>. In Proceedings of Workshop at ICLR, 2013.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. <u>Distributed Representations of Words and Phrases and their</u> <u>Compositionality</u>. In Proceedings of NIPS, 2013.

https://code.google.com/archive/p/word2vec/

overview

- Motivation:
 - How do we handle semantics?
 - How can we represent words in order to keep the meaning?
- Neural Network Language Model
 - Continuous Bag of Words
 - Skip-gram

distributed semantics

A bottle of tesgüino is on the table. Everybody likes tesgüino. Tesgüino makes you drunk. We make tesgüino out of corn.

The meaning of a word is related to the distribution of the words around it.

from **Speech and Language Processing** by Dan Jurafsky and James H. Martin. *Tesgüino is a corn beer made by the Tarahumara Indians of Sierra Madre in Mexico.

distributed semantics

The hypothesis of linguistics by Firth (1957): "We shall know the word by the company it keeps."

There can be many types of relatedness:

- synonyms: big and large
- concept categories: dog, cat \rightarrow animals
- associations: bee & honey
- analogies: big and bigger as small and smaller

• ...

Words as one-hot vectors:

The size of one-hot vector is equal to the vocabulary size.

Words as rows of term-document matrix:

	D1	D2	D3	D4	D5	
а	_[145	223	346	78	89]
abandon	4	0	0	5	3	
ability	5	10	0	4	7	
able	31	35	64	3	5	
about	64	68	89	24	9	
above	4	5	8	0	0	
abroad	0	0	1	0	0	
absence	2	4	0	0	0	
absent	0	0	1	0	0	
absolute	3	1	5	0	1	
abstract	5	1	2	1	0	
abuse	0	1	0	0	0	
academic	1	3	0	0	0	
	L	•••]

The meaning of the word is represented by documents it tends to occur in.

Words as rows of term-term or word-word or word-context matrix: instead of documents we can define smaller contextes

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of left context: tablespoonful of right context: preserve or context/window size : 2

Shorter windows can capture more syntactic connections between words while larger windows can capture more semantic information.

Modification:

• TF-IDF: $w_{ij} = tf_{ij}idf_i$

 tf_{ij} frequency of the i-th term in the j-th document idf_i inverse document frequency of the i-th term

$$\operatorname{idf}_i = \log\left(\frac{N}{df_i}\right)$$

• Positive Pointwise Mutual Information:

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

How do we quantify similarity of words?

Most commonly used metric is cosine:

Alternatives:

$$\begin{aligned} \operatorname{Jaccard}(\vec{v}, \vec{w}) &= \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)} \\ \operatorname{Dice}(\vec{v}, \vec{w}) &= \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} (v_i + w_i)} \\ \operatorname{JS}(\vec{v} || \vec{w}) &= D(\vec{v} | \frac{\vec{v} + \vec{w}}{2}) + D(\vec{w} | \frac{\vec{v} + \vec{w}}{2}) \end{aligned}$$

$$\operatorname{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

...

Still holds:

- the size of word vectors is equal to the vocabulary size
- word vectors are sparse

word embedding

Embedded representations: short dense vectors that keep word semantics

Embedding: the whole process

Two approaches:

- count-based methods
- predictive methods

Don't count, predict! by Marco Baroni, Georgiana Dinu and German Kruszewski, ACL 2014.

language modeling

Task: Predict a word after the sequence of *n* words.Classical approach: maxim likelihood principle
maximize probability $P(w_n|w_{n-1}w_{n-2}...w_1)$

2-gram approach:

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_w C(w_{n-1}w)}$$

 $P(w_{n}w_{n-1}w_{n-2}...w_{1}) = P(w_{1})P(w_{2}|w_{1})P(w_{3}|w_{2}w_{1})...P(w_{n}|w_{n-1}w_{n-2}...w_{1})$ ~ $P(w_{1})P(w_{2}|w_{1})P(w_{3}|w_{2})...P(w_{n}|w_{n-1})$

Issues: out-of-vocabulary words, smoothing

I feel like a black _____

neural network language model

Task: predict w_t after a sequence of words $w_{t-3} w_{t-2} w_{t-1}$

Feedforward NN classifier

Input: word indexes
Output: index of the next word

V: vocabulary size d: embedded word size

neural network language model

Network:

1) transform word w_i to one hot representation x_i 2) $e = (Ex_1, Ex_2, ..., Ex_k) \leftarrow learned$ **embedding**matrix3) <math>h = activation(We + b)4) z = Uh5) y = softmax(z)

softmax calculates probability distribution

$$softmax(x) = \left(rac{e^{x_1}}{\sum_{i=1}^C e^{x_i}}, \dots, rac{e^{x_C}}{\sum_{i=1}^C e^{x_i}}
ight)$$

Training: backpropagation

Loss: categorical cross entropy

Optimisation algorithm: stochastic gradient descent

A Neural Probabilistic Language Model. Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin, JMLR, 2003.

word2vec approach

- Inspection: most of the complexity comes from the connection of the projection layer and the hidden layer as projections are dense
- feedforward neural networks without hidden layer:
 - input layer
 - projection layer
 - output layer
- increase the amount of training data
- the plan is to use the **embedding matrix**, not to predict words as it might be expected

Continuous Bag of Words (CBOW)

Task:

build a log-linear classifier that can correctly classify middle word for the given context

Continuous Bag of Words (CBOW)

- input: context words
 - one-hot representations
- output: hierarchical softmax
 - vocabulary is presented as Huffman binary tree
- projection layer:
 - it is shared as well as projection matrix projected values are averaged
 - the order of words in the history does not influence the projection

complexity per training example: N x D + D x log₂(V)

N - context size, D - embeddings dimensions, V - vocabulary size

hierarchical softmax

• Softmax:

$$softmax(x) = \left(rac{e^{x_1}}{\sum_{i=1}^C e^{x_i}}, \dots, rac{e^{x_C}}{\sum_{i=1}^C e^{x_i}}
ight)$$

- Computation complexity is $O(V) \leftarrow c=v$
- Vocabulary is presented as a Huffman binary tree
- Hierarchical Softmax:

decompose calculating the probability of one word into a sequence of probability calculations

• Computational complexity O(log₂(V))

Continuous skip-gram model

• Task:

build a log-linear classifier that can correctly classify neighbour words for the given center word

• Precisely:

for the center word and a given new word network will give us the probability of "a new word is a neighbour word" property

Skip-gram

Continuous skip-gram model

- input: word
 - one-hot representations
- output: hierarchical softmax
 - vocabulary is presented as Huffman binary tree
- projection layer:
 - used for word embeddings

complexity per training example: C x (D + D x log₂(V)

C - maximum distance of the words, D - embeddings dimensions, V - vocabulary size

Skip-gram

Continuous skip-gram model

This model learn two matrices: embedding matrix and context matrix

neural network training

- For every positive sample, we use some number of "negative" samples: samples we would like the network to predict value 0 for example: guick, sheep
- Some recommended values for the number of negative samples 5 to 20
- "unigram" table with frequencies

neural network training

- Backpropagation
- Stochastic gradient descent
 - start learning rate 0.025 and decrease it lineary
- Large scale parallel training of models is done by distributed framework called DistBelief

evaluation of word embeddings quality

Question:

"What is the word that is similar to X in the same sense as Y is similar to Z?"

Result is obtained by simple algebraic operations:

vector closest to the vector(Z)-vector(Y) + vector(X)

For example:

X = small, Y = big, Z = bigger

r = vector("bigger")-vector("big") + vector("small")

search for embedding that is closest (cosine metric) to r gives "smaller"

evaluation of word embeddings quality

 5 types of semantic questions

 9 types of syntactic questions

Type of relationship	Word Pair 1		Word Pair 2		
Common capital city	Athens	Greece	Oslo	Norway	
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe	
Currency	Angola	kwanza	Iran	rial	
City-in-state	Chicago	Illinois	Stockton	California	
Man-Woman	brother	sister	grandson	granddaughter	
Adjective to adverb	apparent	apparently	rapid	rapidly	
Opposite	possibly	impossibly	ethical	unethical	
Comparative	great	greater	tough	tougher	
Superlative	easy	easiest	lucky	luckiest	
Present Participle	think	thinking	read	reading	
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian	
Past tense	walking	walked	swimming	swam	
Plural nouns	mouse	mice	dollar	dollars	
Plural verbs	work	works	speak	speaks	

In total: 8869 semantic and 10675 syntactic questions

evaluation of word embeddings quality

Vectors of various sizes on various dataset are learned and evaluated.

Model	Vector Dimensionality	Training words	Accuracy [%]			Training time [days]
			Semantic	Syntactic	Total	
3 epoch CBOW	300	783M	15.5	53.1	36.1	1
3 epoch Skip-gram	300	783M	50.0	55.9	53.3	3
1 epoch CBOW	300	783M	13.8	49.9	33.6	0.3
1 epoch CBOW	300	1.6B	16.1	52.6	36.1	0.6
1 epoch CBOW	600	783M	15.4	53.3	36.2	0.7
1 epoch Skip-gram	300	783M	45.6	52.2	49.2	1
1 epoch Skip-gram	300	1.6B	52.2	55.1	53.8	2
1 epoch Skip-gram	600	783M	56.7	54.5	55.5	2.5

properties of word embeddings

embedding('kings')-embedding('king')+embedding('queen') \rightarrow embedding('queens')

properties of word embeddings

Examples of learned relationships:

Relationship	Example 1	Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

improvements

- phrases are included:
 - New York, Montreal Canadiens, ...
 - In total: 3 million of new words
- data-driven approach is used for phrases extraction
 - (pab min_count) / (pa * pb) where pa, pb, and pab are the number of occurrences of words a, b, and their combination
 - min_count is a predefined value used for elimination of very infrequent phrases
- phrases are treated as individual tokens
 - New_York, Montreal_Canadiens, ...

improvements

- subsampling of frequent words
 - some words appear more often than other words but do not contribute to semantic the, a, in, ...
 - exclusion of these word will improve the balance of rare and frequent word as well as speed up the training (according to results from 2x to 10x)
- $z(w_i)$ is the fraction of total words in the corpus that are w_i for example, if *peanut* occurs 1,000 times in a 1 billion word corpus, then z('peanut') = 1E-6
- The probability of keeping the word w_i

$$P(w_i) = (\sqrt{\frac{z(w_i)}{0.001}} + 1) \cdot \frac{0.001}{z(w_i)}$$

• $P(w_i) = 1$ when $z(w_i) \le 0.0026 \rightarrow$ words which represent more than 0.26% of the total words will be subsampled.

comparison

- The size of embeddings: 300
- NEG-k: negative sampling with k negative samples per positive sample
- NSE: Noise Contrastive Estimation
- HS-Huffman: Hierarchical Softmax

Method	Time [min]	Syntactic [%]	Semantic [%]	Total accuracy [%]
NEG-5	38	63	54	59
NEG-15	97	63	58	61
HS-Huffman	41	53	40	47
NCE-5	38	60	45	53
	The follo	wing results use 1	10^{-5} subsampling	g
NEG-5	14	61	58	60
NEG-15	36	61	61	61
HS-Huffman	21	52	59	55

Thank you!